
Avoiding Unnecessary 
Upstream Traffic in Bidir-PIM 

Jeffrey Zhang 
Weesan Lee 

 
Juniper Networks 

 
82th IETF, Taipei 



Scenario #1 of unnecessary upstream traffic 
•  The tree depicts all routers and their RPF interfaces (towards RP) 

–  Assuming RPA is on a loopack interface 
•  More general situation described later 

•  No receiver anywhere – traffic should be stopped at the FHR R3/R7 

RP 

R1 R2 

R3 R4 

R5 R6 R7 R8 

src1 

src2 

traffic 

traffic to be 
avoided 



Scenario #2 of unnecessary upstream traffic 

RP 

R1 R2 

R3 R4 

R5 R6 R7 R8 

rcvr1 

rcvr2 

src3 

src1 

src4 

src2 

(*,g) 

(*,g) 

(*,g) 

(*,g) 

traffic 

traffic to be 
avoided 



RP-Prune procedures for scenario #1 
•  RP has (*, G-prefix) notification route 

–  vs. the normal “forwarding to RPL” route 
–  Traffic hitting the route triggers throttled control plane notification 

•  Indicating traffic is being received unnecessarily 
–  Otherwise it would have hit specific (*,G) forwarding route 

–  The notification triggers RP-Prune out of the incoming IF 
•  Multicast to ALL-PIM-ROUTERS 

–  Interface-wide RP-Prune 

•  Upon receiving the RP-Prune, downstream router installs 
(*, G) notification route 
–  Subsequent traffic hits the (*, G) notification route, triggering RP-

Prune further downstream, instead of being forwarded upstream 
•  RP-Prune is data-triggered hop-by-hop: 

–  by the pre-installed (*,G-prefix) notification route on RP 
–  by the triggered (*,G) notification route on downstream routers 



RP-Prune scenario #1 illustration 

RP 

R1 R2 

R3 R4 

R5 R6 R7 R8 

src1 

src2 

RP-Prune 



RP-Prune procedures for scenario #2 
•  RP sends periodic neighbor-specific RP-Prune to the 

only downstream neighbor in (*,G) join state 
–  Assumes Explicit Tracking 

•  If ET is not used, another downstream with the (*,G) state needs to 
trigger overriding (*,G) join upon receiving the RP-Prune, and the 
target of RP-Prune needs to ignore the RP-Prune when receiving 
that overriding (*,G) join 

•  Downstream router prunes the RPF IF from (*,G) 
forwarding route’s OIF list 
–  Stops traffic from going upstream 

•  Downstream router further propagates RP-Prune to its 
only downstream neighbor 
–  Terminates when there are more than one downstream IF/

neighbor – R4 in the example 



RP-Prune scenario #2 illustration 

RP 

R1 R2 

R3 R4 

R5 R6 R7 R8 

rcvr1 

rcvr2 

src1 

src3 

src2 

src4 

(*,g) 

(*,g) 

(*,g) 

(*,g) 

RP-Prune 



RP-Prune states 
•  Upstream IF & Neighbor 
•  List of downstream IF where RP-Prune was sent 

–  Flag for interface-wide or nbr-specific RP-Prune 
–  List of downstream neighbor on the IF 

•  A nbr-specific prune was sent to it, or 
•  A RP-Prune-Keep was received from it 

–  A timer to time out if downstream stops refreshing RP-Prune-
Keep 

–  Interface-wide RP-Prune case (scenario #1) 



RP-Prune state maintenane: 
Interface-wide RP-Prunes (Scenario #1) 

•  Maintained from downstream upwards 
–  FHR keeps receiving data traffic, keeps the RP-Prune 

state alive for the incoming interface, and refreshes 
RP-Prune-Keep towards its upstream 

•  Each hop will refresh its upstream by RP-Prune-Keep 

–  After source stops sending, FHR times out its RP-
Prune state, and sends RP-Prune-Cancel upstream 

•  Each hop propagates the RP-Prune-Cancel if it no longer has 
other downstream in the RP-Prune state (i.e., no other 
sending branches) 



RP-Prune state maintenance: 
Neighbor-specific RP-Prunes (Scenario #2) 

•  Maintained from RP downwards 
–  RP refreshes RP-Prune as long as it has only one 

downstream neighbor 
–  Each hop propagates the RP-Prune unless it has 

more than one downstream IF/Nbr 



RP-Graft Procedures 
•  RP sends interface-wide RP-Graft to wherever it sent 

interface-wide RP-Prune before, when it gets initial 
corresponding (*,G) join state 
–  also sends neighbor-specific RP-Prune to the new/only 

downstream neighbor (scenario #1 becomes #2) 
•  Any router (RP or not) who sent Neighbor-specific RP-

Prune before triggers RP-Graft when it first gets more 
than one downstream IF/nbr for a (*, G) join state 
–  Neighbor-specific RP-Graft sent to the downstream neighbor 

recorded in the RP-Prune state 
•  Upon receiving RP-Graft, downstream routers: 

–  Removes (*,G) notification route (scenario #1), or 
–  Adds RPF IF to (*,G) forwarding route (scenario #2) 
–  Reply with RP-Prune-Cancel as acks 

•  Upstream retransmits RP-Graft until all applicable downstream 
neighbors in the RP-Prune state have ack’ed 



What if RPA is not on a loopback IF? 

–  Traffic always forwarded to the RPL 
–  Join/Prunes not sent to the RPL 

•  Modified behavior: 
–  Join/Prunes sent to ALL-PIM-ROUTERs on RPL 

•  But not further downstream 
–  Traffic forwarded to the RPL only if a corresponding join has 

been received on the RPL 
–  Each router on the RPL is called a virtual RP and follows the RP-

Prune/Graft procedures defined earlier 
•  Another virtual RP considered as a downstream for a particular 

group if a join has been received from it 
•  RP-Graft/Prune/Prune-Keep/Prune-Cancel messages are not sent 

to the RPL though to the RPL though 



Virtual RP illustration 
R1 

R5 R6 

R3 R4 

R2 

RPA 

(*,g) 

(*,g) 

(*,g) (*,g) 

rcvr 

 
 

•  Virtual RP R1~R3 all have only one downstream (R4 on the RPL), 
but do not send RP-Prune (to R4 on the RPL) 
•  Virtual RP R4 has one downstream R6 and sends RP-Prune to it 

•  If R5 gets a receiver, R4 will send RP-Graft to R6 because it now 

RPL 



Handling of topology changes Handling of topology changes 

–  Sends RP-Graft downstream 
–  Remove RP-Prune states 

•  Remove (*,G) notification routes, or 
•  Add back, or add new RPF IF to (*,G) forwarding route •  Add back, or add new RPF IF to (*,G) forwarding route 



Scaling properties 

–  Data-driven (*,G) RP-Prune states on relevant 
sending branch only 

•  For traffic that nobody wants 
–  traffic with receivers does go through w/o data-driven events 

•  Time out when source stops sending 

•  Scenario #2 
–  Control-driven (*,G) RP-Prune states on relevant 

single-downstream routers only 
•  Minimum states for stopping unnecessary 

upstream traffic upstream traffic 



Next steps Next steps 

•  Seek comments and WG adoption •  Seek comments and WG adoption 


