Extensions to the PCEP to compute service aware LSP.

draft-dhody-pce-pcep-service-aware

Dhruv Dhody (dhruv.dhody@huawei.com)
Vishwas Manral (vishwas.manral@hp.com)

<u>Introduction</u>

- Many service providers SLA depends on performance metrics
 - Latency (delay)
 - Latency-Variation (jitter)
 - Packet loss
- Important Applications/Scenarios
 - Electronic Financial Market
 - High Performance computing on Cloud
- Moving forward the <u>service aware</u> WAN will become more and more critical.
- Extension to PCEP to support Latency, Latency-variation and Loss as constraints for end to end path computation.

Requirement for PCEP

- PCE have capability to compute end-to-end path with latency, latencyvariation and packet loss constraints.
 - In itself
 - Combination with other constraints
- PCC able to request new constraints in PCReq
 - Key constraint to be optimized
 - Boundary Condition
- Non-Supporting Service aware PCE
- PCE returns end-to-end value of the computed path
- PCEP should handle multiple domains

PCEP Extension

- Three new metric types are added
 - * T=13(IANA): end-to-end Latency (delay) metric
 - * T=14(IANA): end-to-end Latency-Variation (Jitter) metric
 - * T=15(IANA): end-to-end Packet Loss metric

PCEP Extension

As explained in [RFC5440], The METRIC object is optional and can be used for several purposes. In a PCReq message, a PCC MAY insert one or more METRIC objects:

- o To indicate the metric that MUST be optimized by the path computation algorithm (Latency, Latency-Variation or Loss)
- o To indicate a bound on the path METRIC (Latency, Latency-Variation or Loss) that MUST NOT be exceeded for the path to be considered as acceptable by the PCC.

Example:

If a PCC sends a path computation request to a PCE where the metric to optimize is the latency and the packet loss must not exceed the value of M

- o First METRIC object with B=0, T=13, C=1, metric-value=0x0000
- o Second METRIC object with B=1, T=15, metric-value=M

Related work

WG		Details
MPLS	RFC 6374	Packet Loss and Delay Measurement for MPLS Networks
	draft-ietf-mpls-tp-loss- delay-oo	Packet Loss and Delay Measurement for MPLS Transport Profile
	draft-fuxh-mpls-delay- loss-rsvp-te-ext-oo	RSVP-TE extensions for services aware MPLS
OSPF	draft-giacalone-ospf-te- express-path-o2	OSPF Traffic Engineering (TE) Express Path
ISIS	draft-previdi-isis-te- metric-extensions-oo	IS-IS Traffic Engineering (TE) Metric Extensions
CCAMP	draft-fuxh-ccamp-delay- loss-te-framework	Framework for latency and loss traffic engineering application

Next Steps

- Continue analysis for
 - Inter-Domain (especially Inter-as-link)
 - Multi-Layer
 - Reoptimization
 - Policy Consideration
 - P2MP
- Managebility and security considerations needs analysis.

Questions & Comments?

Thanks!