
1

Framework for IPv4/IPv6
Multicast Translation

draft-venaas-behave-v4v6mc-

framework-03.txt

2

Overview
•  Behave did a unicast translation

framework, RFC 6144
•  This draft started out as a multicast

version of that
•  Scenarios talk about Internet which is not

so common for multicast
– Think of it as a large network or a set of

networks
– The important thing is scale, and whether you

have administrative control

3

Scenarios
1.  An IPv6 network receiving multicast from

IPv4 Internet
2.  IPv6 Internet receiving multicast from an IPv4

network
3.  An IPv4 network receiving multicast from

IPv6 Internet
4.  IPv4 Internet receiving multicast from an IPv6

network
5.  An IPv6 network receiving multicast from an

IPv4 network
6.  An IPv4 network receiving multicast from an

IPv6 network

4

Multicast and translation
•  When doing multicast translation, you have a source S

sending to a group G
•  A receiver of translated content would join T(G) and

receive from T(S), where T is some translation/mapping
function

•  How is T defined, stateful/stateless? Well-known?
•  How does the receiver know T(G)?
•  For SSM the receiver would need to know T(S) as well

Translator

R
S

G
T(G)

Join T(G) Join G

T(S)

5

 IPv6 network receiving multicast
from IPv4 Internet

•  Not so hard since IPv4 address space can be
embedded into IPv6
–  E.g. T(224.1.2.3) = ff1e::ffff:224.1.2.3
–  May need to accommodate for SSM and

scopes
–  T(232.1.2.3) = ff3e::ffff:232.1.2.3
–  T(239.1.2.3) = ff35::ffff:239.1.2.3

•  R wants to receive G and joins T(G)
•  Note that this may also allow IPv4 to receive

from IPv6, if IPv6 sources send do T(G), it can
be translated back to G.

6

IPv6 network receiving multicast
from IPv4 Internet

•  How does R know T(G)?
•  If receiver is unaware of translation

–  Content provider could provide SDP with both T and
T(G)

–  Assumes content provider knows translation may
take place and the function T

–  SDP data may be translated by an ALG
•  If receiver is aware of translation

–  Application or stack on R knows T
–  If only IPv4 address in SDP, app/stack can apply T

and join T(G)
–  How to know/learn T? Well-known prefix?

7

Well-known multicast prefix(es)?
•  Well-known multicast prefixes could be hardcoded

in apps/stacks so that they know T() and join
translated groups when needed

•  If not well-known, there can be different prefixes
for different translators
–  May choose which translator is used

•  For trees to pass through the translator, it may
need to be an IPv6 Rendezvous Point. In that
case embedded-RP might be useful
–  Embedded-RP encodes the unicast address of the RP

in the group address. Hence well-known multicast prefix
is hard, unless also well-known unicast address
(anycast)

8

IPv4 network receiving multicast
from IPv6 Internet

•  We cannot use a simple embedding and
stateless translation

•  How does translator get a mapping so it can
translate an IPv4-join into IPv6?
–  And translate data from IPv6 to IPv4

•  Might use some ALG to translate e.g. SDP as it
passes through the translator

•  Or new signaling mechanisms between
receiver and translator

•  An administrator might add static mappings and
inform users, or create new SDP, with groups
to use

9

New signaling mechanisms

•  We may need new signaling mechanisms
for an IPv4 host or network to be able to
receive arbitrary IPv6 groups

•  A translation aware application or stack
could send a query to the translator
saying:
–  I want to receive G, which T(G) should I join?
–  The translator can have a pool of IPv4

addresses and allocate them as needed

10

Summary

•  Solutions depend on whether either
content provider or receiver is aware of
translation taking place, and the mapping
function

•  For IPv6 receiving from IPv4, stateless
translation is simple

–  Well-known prefix?
•  For IPv4 receiving from IPv6, stateful

translation may be needed
–  How to create the state/mapping?

