Opus Testing

Opus Testing

o Goal:

« Create a high quality specification and implementation
 Problem:Engineering is hard

* More details than can fit in one person’s brain at once

* Does the spec say what was meant?

 Does what was meant have unforeseen consequences?

« Are we legislating bugs or precluding useful
optimizations?

Why we need more than formal
listening tests

 Formal listening tests are expensive, meaning

 Reduced coverage
* Infrequent repetition

* |nsensitivity
 Even a severe bug may only rarely be audible
« Can’t detect matched encoder/decoder errors

» Can’t detect underspecified behavior (e.g., “works
on my architecture”)

« Can't find precluded optimizations

The spec is software

* The formal specification is 29,833 lines of C
code

» Use standard software reliability tools to test it
* We have fewer tools to test the draft text

 The most important is reading by muiltiple critical
eyes

* This applies to the software, too

* Multiple authors means we review each other’s
code

Continuous Integration

« The later an issue is found

« The longer it takes to isolate the problem

« The more risk there is of making intermediate development
decisions using faulty information

« We ran automated tests continuously

All opus 4+

S Name | Description Last Statuses Last Duration
Libopus autotools build ™
5 \ \ 6.4 ca 5.4 days 3min 19 s
\J gpus Rendered library documentation: HTML, POF $>220ays S min 13 sec "i)
“ opus build frem |[ETF site This fetches the draft posted on the IETF site and builds libopus from it 9.9 days 21 =ec ';i.)
“ opus-arm Libopus autotools build on ARM 13 days 13 min ;i)
Lib floating-point test , ™
“ CpuUs-coverage L;tzthl|Sesjﬁslng pointeoverags 1es 6.ddays = 5.4 days 12 min Li)
L Libopus fixed-point coverage test . i~
“ opus-coverage-fixed e 6.4 days 13 min "i)
Libopus static analysis with cppcheck . o
“ opus-cppcheck It iie 6.4 days 26 min "i)
q opus-custom-fixed Libopus opus-custom fixed-point autotools build 6.ddays > 6.4 days 2 min 56 sec Li)

Software Reliability Toolbox

« No one technique finds all issues
« All techniques give diminishing returns with additional use

« S0 we used a bit of everything

« Operational testing

« Objective quality testing

« Unit testing (including exhaustive component tests)
« Static analysis

« Manual instrumentation

« Automatic instrumentation

« Line and branch coverage analysis

« White- and blackbox “fuzz” testing

« Multiplatform testing

« Implementation interoperability testing

Force Multipliers

« All these tools are improved by more participants

 Inclusive development process has produced more review,

more testing, and better variety

« Automated tests improve with more CPU

- We used a dedicated 160-core cluster for large-scale tests

« Range coder mismatch

The range coder has 32 bits of state which must match between
the encoder and decoder

Provides a “checksum” of all encoding and decoding decisions
Very sensitive to many classes of errors

opus_demo bitstreams include the range value with every
packet and test for mismatches

Operational Testing

« Actually use the WIP codec in real applications
« Strength: Finds the issues with the most real-world impact
« Weakness: Low sensitivity

« Examples:

« “|t sounds good except when there’s just bass” (rewrote the VQ search)
 “It sounds bad on this file” (improved the transient detector)

- “Too many consecutive losses sound bad” (made PLC decay more
quickly)

« “If | pass in NaNs things blow up” (fixed the VQ search to not blow up
on NaNs)

Objective Quality Testing

Run thousands of hours of audio through the codec with many settings

« Can run the codec 6400x real time
. 7 days of computation is 122 years of audio

Collect objective metrics like SNR, PEAQ, PESQ, etc.
Look for surprising results
Strengths: Tests the whole system, automatable, enables fast comparisons

Weakness: Hard to tell what's “surprising”
Examples: See slides from IETF-80

0.035
0.03
0.025

0.015
0.01
0.005
0
-0.005
-0.01
-0.015
-0.02

PEAQ ODG difference

0.02

[I
...GITvs 0.11, 10ms mono ————

Y Tt 11]I
I ;#'J'hhﬂ“l Wit ;

Al R e

I ||‘I|L1|I .v," "Ir\'\rk"h‘.‘_f\"'v\'“'\r—ﬂ"—

64 128
kbit/sec

192

256

NMR dB

-10

—20 FE—

=30

—40+}-

=50

10

ol

e : 000, : : L
q& 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Kbit/sec

0.064

0.056

0.048

0.040

0.032

0.024

0.016

0.008

0.000

P(NMR)

Unit Tests

« Many tests included in distribution

« Run at build time via “make check”
« On every platform we build on

« Exhaustive testing

. Some core functions have a small input space (e.g., 32 bits)
. Just test them all

« Random testing

. When the input space is too large, test a different random subset every time
. Report the random seed for reproducibility if an actual problem is found

« Synthetic signal testing

. Used simple synthetic signal generators to produce “interesting” audio to feed the encoder
. Just a couple lines of code: no large test files to ship around

« AP testing

« We test the entire user accessible API
« Over 110 million calls into libopus per “make check”

. Strengths: Tests many platforms, automatic once written
. Weaknesses: Takes effort to write and maintain, vulnerable to oversight

Static Analysis

e Compiler warnings
« Alimited form of static analysis

 We looked at gcc, clang, and MSVC warnings regularly
(and others intermittently)

« Real static analysis
« cppcheck, clang, PC-lint/splint

« Strengths: Finds bugs which are difficult to detect
In operation, automatable

* Weaknesses: False positives, narrow class of
detected problems

Manual Instrumentation

|dentify invariants which are assumed to be true, and
check them explicitly in the code

Only enabled in debug builds
513 tests in the reference code

« Approximately 1 per 60 LOC

Run against hundreds of years of audio, in hundreds of
configurations

« Strengths: Tests complicated conditions, automatic once
written

« \Weaknesses: Takes effort to write and maintain,
vulnerable to oversight

Automatic Instrumentation

o valgrind
« An emulator that tracks uninitialized memory at the bit level

« Detects invalid memory reads and writes, and conditional jumps based on
uninitialized values

« 10x slowdown (600x realtime)
« clang-10C
« Set of patches to clang/llvm to instrument all arithmetic on signed integers
« Detects overflows and other undefined operations
« Also 10x slowdown
« All fixed-point arithmetic in the reference code uses macros

« Can replace them at compile time with versions that check for overflow or
underflow

« Strengths: Little work to maintain, automatable
« \Weaknesses: Limited class of errors detected, slow

Line and Branch Coverage Analysis

Ensures other tests cover the whole codebase

Logic check in and of itself

. Forces us to ask why a particular line isn’t running

We use condition/decision as our branch metric

. Was every way of reaching this outcome tested?

“make check” gives 97% line coverage, 91% condition coverage

Manual runs can get this to 98%/95%

. Remaining cases mostly generalizations in the encoder which can’t be removed without decreasing code

443
444
445
446
447
448
449

readability
Strengths: Detects untested conditions, oversights, bad assumptions

Weaknesses: Not sensitive to missing code

[+
[+

15462414

12684510
12684510

12684510

if (N=1)

{

excess = IMAX(bits[j]-capljl,@);
bits[j] -= excess;

/* Compensate for the extra DoF in stereo #*/

den=(C*N+ ((C==2 && N=2 && !*dual stereo && j<*intensity) ? 1 :

B));

Decoder Fuzzing

Blackbox: Decode 100% random data, see what happens

« Discovers faulty assumptions

« Tests error paths and “invalid” bitstream handling

. Not very complete: some conditions highly improbable

« Can’t check quality of output (GIGO)

Partial fuzzing: Take real bitstreams and corrupt them randomly

. Tests deeper than blackbox fuzzing
We've tested on hundreds of years worth of bitstreams

Every “make check” tests several minutes of freshly random data

« Strengths: Detects oversights, bad assumptions, automatable, combines well with
manual and automatic instrumentation

« Fuzzing increases coverage, and instrumentation increases sensitivity

« Weaknesses: Only detects cases that blow up (manual instrumentation helps), range
check of limited use

« No encoder state to match against for a random or corrupt bitstream
. We still make sure different decoder instances agree with each other

Whitebox Fuzzing

« KLEE symbolic virtual machine

« Combines branch coverage analysis and a constraint solver
e Generates new fuzzed inputs that cover more of the code
« Used during test vector generation

e Fuzzed an encoder with various modifications

« Used a machine search of millions of random sequences to get
the greatest possible coverage with the least amount of test data

« Strengths: Better coverage than other fuzzing
« \Weaknesses: Slow

Encoder Fuzzing

e Randomize encoder decisions

* More complete testing even than partial fuzzing
(though it sound bad)

» Strengths: Same as decoder fuzzing

* Fuzzing increases coverage, and instrumentation
Increases sensitivity

* \WWeaknesses: Only detects cases that blow up
(manual instrumentation helps)

« But the range check still works

Multiplatform Testing

« Tests compatibility
« Some bugs are more visible on some systems

« Lots of configurations
« Float, fixed, built from the draft, from autotools, etc.
« Test them all
« Automatic tests on
« Linux {gcc and clang} x {x86, x86-64, and ARM}
« OpenBSD (x86)
« Solaris (sparc)
« Valgrind, clang-static, clang-10OC, cppcheck, Icov
« Automated tests limited by the difficulty of setting up the automation
« We had 28 builds that ran on each commit

Additional Testing

« Win32 (gcc, MSVC, LCC-win32, OpenWatcom)
« DOS (OpenWatcom)
« Many gcc versions

« Including development versions
« Also g++

o tinycc

OS X (gcc and clang)

Linux (MIPS and PPC with gcc, IA64 with Intel compiler)
NetBSD (x86)

FreeBSD (x86)

IBM S/390

Microvax

Toolchain Bugs

 All this testing found bugs in our development
tools as well as Opus

* Filed four bugs against pre-release versions of gcc
 Found one bug in Intel’'s compiler

 Found one bug in tinycc (fixed in latest version)

* Found two glibc (libm) performance bugs on x86-64

Implementation Interop Testing

« Writing separate decoder implementation

« Couldn’t really finish until the draft was “done”

« CELT decoder complete

Implements all the MDCT modes

Floating-point only

Shares no code with the reference implementation

Intentionally written to do things differently from the reference implementation
Bugs during development used to tune opus_compare thresholds

Also revealed several “matched errors” in the reference code

Currently passes opus_compare on the one MDCT-only test vector

Tested with over 100 years of additional audio

- 100% range coder state agreement with the reference
— Decoded 16-bit audio differs from reference by no more than +1

Implementation Interop Testing

» SILK decoder in progress

» Started last Thursday

* Implemented from the draft text (not the reference
Implementation)

e Code is complete

* Range check passes for bitstreams tested so far
(not many)

* Actual audio output completely untested
* Hybrid modes: coming soon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

