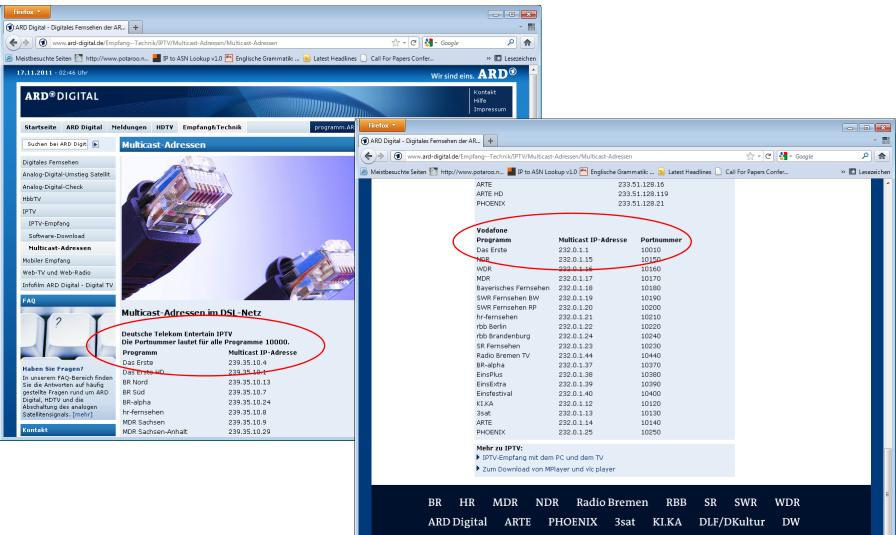
Hybrid Multicast Implementation

Matthias Wählisch, Thomas C. Schmidt Stig Venaas

{waehlisch, t.schmidt}@ieee.org, stig@cisco.com

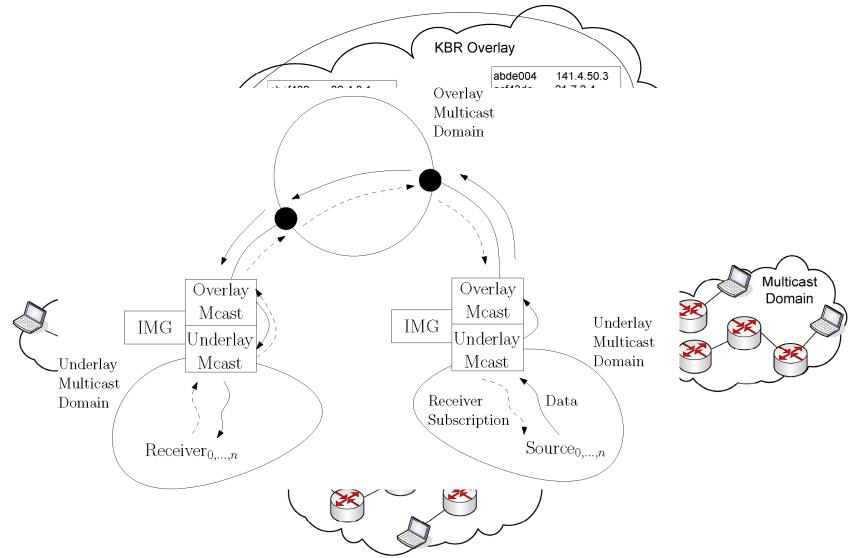


Agenda

- o Motivation
- o Analytical Performance Evaluation
- o Integration into Real-world Mcast Protocols
- o Conclusion

Motivation – No Inter-domain Multicast

Hybrid Multicast


Idea:

- Connect different multicast islands
- Combine different technologies to provide group communication

Challenges:

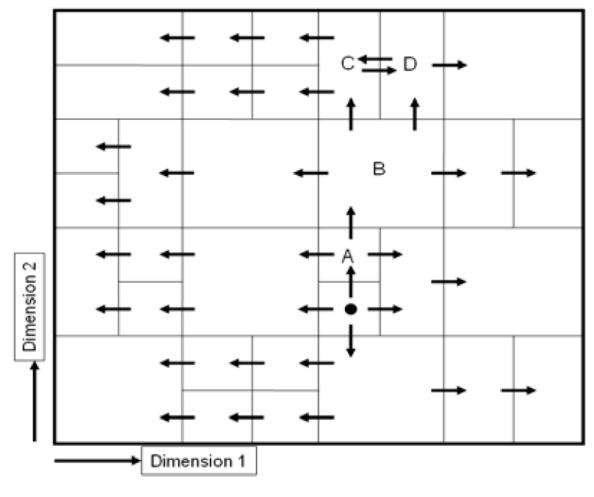
- o Allow for a self-organizing, unified distribution
- o Find ,natural' way for the interplay of mcast protocols
- o Performance of hybrid scenarios

A Hybrid Picture: Shared Tree

Ingredients for Hybrid Multicast

o Multicast routing protocols in overlay and underlay

- Definition for the interplay
- Appropriate multicast naming and mapping scheme
 - ✓ Common Multicast API
- o Gateways
 - Easy to use and extendable system architecture
 - Discovery and configuration of gateways
 - ✓ HAMcast middleware


Scribe – RP-based Overlay Multicast (Castro et al 2002)

- Large-scale distribution service based on Pastry
- o Rendezvous Point chosen from Pastry nodes
 - Choice according to group key ownership
 - RP roots shared distribution tree (analogue PIM-SM)
- o Shared tree created according to reverse path forwarding
 - Nodes hold *children tables* for forwarding
 - New receiver routes a *SUBSCRIBE* towards the RP
 - Subscribe intercepted by intermediate nodes to update children table, reverse forwarding done, if node not already in tree

Multicast on CAN (Ratnasamy et al. 2001)

- Within a previously established CAN overlay members of a Group form a "mini" CAN
 - Group-ID is hashed into the original CAN
 - Owner of the Group key used as bootstrap node
- Multicasting is achieved by flooding messages over this mini CAN
- Number of multicast states is limited by 2d neighbours
 independent of multicast source number!
- Can Multicast scales well up to very large group sizes
 - Replication load limited to neighbours (2d)
 - But tends to generate packet duplicates

CAN Forwarding

Ratnansamy et al. 2001

Performance Evaluation

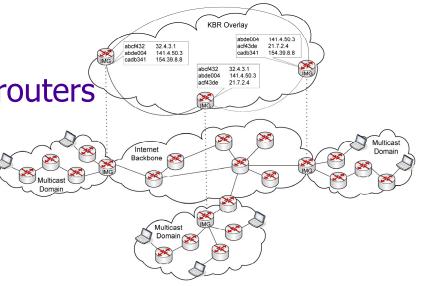
Objectives:

- First order performance estimate, which can reveal the *relative* effects of different overlay approaches
- Derive a simple analytical model for the expected delay distribution in global hybrid multicast

Performance Evaluation Model

Observation:

o Performance of hybrid multicast is composed of


- Inter-domain IP-layer distribution
- Intra-domain transmission, which depends on overlay scheme in use
- > Two-layered distribution system
- o Measurements for delay distributions are available
 - For example, Chalmers and Almeroth, TON, 2003

How do we derive a delay distribution for hybrid mcast?

Building the Performance Model

Common Assumptions:

- Delay of any IP link between routers is exponentially distributed
- Subsequent links perform independent of each other

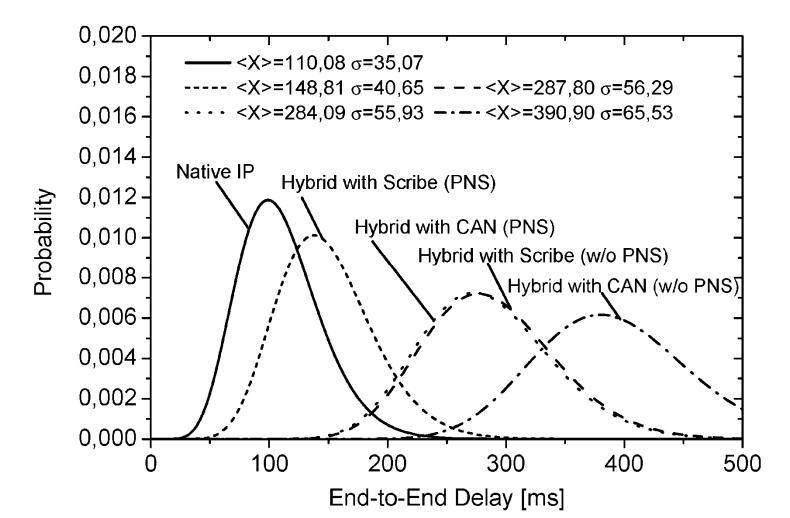
Model: Details: See CoNEXT'09 student workshop paper

- o Single link delay: β , and path length: α
- o Compound link delay of equally distributed links: $f_{\Gamma}(\alpha,\beta,x)$

Overall, Global Delay Distribution

Two-layered distribution (from Gammas):

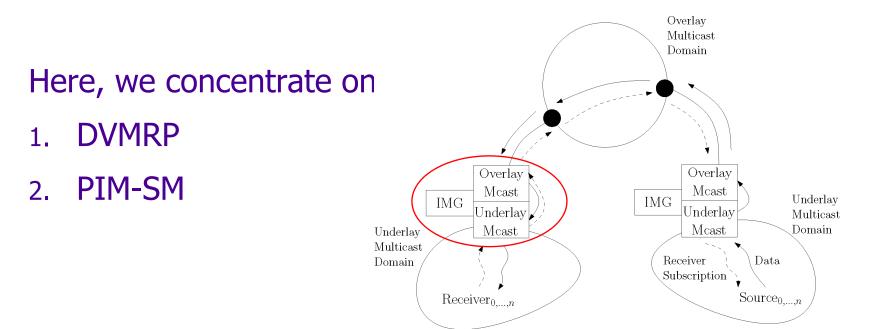
$$g(y) = C \cdot \left\{ f_{\Gamma}(\alpha_1 + \alpha_2, \beta_1, y) + \alpha_2 \left(1 - \frac{\beta_1}{\beta_2} \right) \cdot f_{\Gamma}(\alpha_1 + \alpha_2 + 1, \beta_1, y) \right\}$$


with
$$C = (1 + \alpha_2 (1 - \beta_1 / \beta_2))^{-1}$$

with parameters taken from external measurements:

Parameter	Value
Inter-AS Delay (β_1)	$10.91 \mathrm{\ ms}$
Intra-AS Delay (β_2)	$14.77 \mathrm{\ ms}$
Inter-AS Hopcount (α_1) IP-level	4
Intra-AS Hopcount (α_2) IP-level	5.5
Overlay Hopcount (α_1/d) Scribe $(k = 16)$	$\log_{16}(30.000) + 1$
Overlay Hopcount (α_1/d) CAN $(D=8)$	$\sqrt[8]{30.000}$

What Can We Expect?


A priori performance estimator:

14

Protocol Engineering: Bringing native IP and OLM together

How do we couple native IP multicast routing protocols with overlay multicast?

DVMRP

- o Arbitrary router will not be informed about new receivers
- Immediately knows new sources
 - Prune/graft approach
- Source-specific trees + no central multicast instance

Relay Agent Operations:

- Receives all multicast underlay data automatically + joins stream
 - enableEvents(); new_source_event + join();
- Send all data to overlay + forward data to underlay
 - Initiate all-group join based on namespace extension in API
 - Underlying DVMRP will limit unwanted traffic automatically

PIM-SM

- Rendezvous Points receives multicast and listener states
 - Simplifies source and receiver awareness
- Designated routers of a PIM domain send receiver subscriptions towards RP

Relay Agent Operation:

- Place agent close to Rendezvous Point
- o PIM register messages initiate new_source_event
 - Join the multicast group in underlay
- Join multicast group in overlay based on new_receiver_event in underlay

Conclusion

- Hybrid multicast schemes can be implemented by common multicast API
- O Under the assumption of equally efficient implementations, hybrid inter-domain multicast can be deployed with little performance penalty on today's Internet
- o Real-world measurements on the way