
tcpcrypt: ���
real transport-level
encryption���
	

UCL and Stanford.	

Andrea Bittau, Mike Hamburg,
Mark Handley, David Mazieres,
Dan Boneh.	

What would it take to encrypt the vast majority
of TCP traffic?	

Performance	

• Fast enough to enable by default on almost all servers.	

Authentication	

• Leverage certificates, cookies, passwords, etc., to give best

possible security for any given setting.	

Compatibility	

• Works in existing networks	

• Works with unmodified legacy applications	

An observation on layering of crypto	

n  Encryption is a generic function. 	

o  Independent of the semantics of the application.	

n  Integrity Protection is a generic function.	

o  What arrives should be what is sent.	

n  Authentication is strongly application-specific.	

o  Depends on the semantics of the application.	

An observation on layering of crypto	

Observation: Encryption and Integrity Protection are lower-layer
functions than Authentication.	

n  Encryption and Integrity Protection are natural transport-layer
functions.	

o  Cannot integrity-protect transport protocol from above it.	

o  Different transport sessions have different security

requirements so cannot share encryption keys.	

n  Authentication is application-layer.	

Tcpcrypt	

Tcpcrypt uses TCP options to provide deployable
transport-level encryption.	

n  High server performance - push complexity to clients	

n  Allow applications to authenticate endpoints.	

n  Backwards compatibility: all TCP apps, all networks, all
authentication settings.	

Tcpcrypt overview	

n  Extend TCP in a compatible way using TCP options. 	

n  Existing applications use standard socket API, just like
regular TCP. 	

o  Encryption automatically enabled if both end points

support Tcpcrypt. 	

n  Extended applications can use a new getsockopt() for
authentication.	

Push expensive operations to the client	

Public-key operations can be
quite assymetric.	

RSA-exp3-2048 performance:	

Operation	
 Latency	

Encrypt	
 0.26ms	

Decrypt	
 10.42ms	

Perform decrypt on the client:	

Generate emphemeral key pair :	

Generate random master key	

public key

encpub_k(master_key)

client	
 server	

Initial handshake:	

No authentication.	

Client decrypts.

Lets servers accept connections	

36x faster than SSL	

After initial handshake, tcpcrypt’s Session ID
provides the hook to link application
authentication to the session.	

n  New getsockopt() returns non-secret Session ID value. 	

n  Unique for every connection.	

n  If same on both ends, guaranteed there’s no man-in-the-middle.	

How to check the Session ID?	

n  Out-of-band: e.g., phone call, other secure protocol.	

n  PKI: server signs Session ID. 	

n  Pre-shared secret: send CMAC of Session ID, keyed

with Pre-shared secret.	

session
ID

session
ID

tcpcrypt

Authentication Example: ���
Password-based Mutual Authentication	

n  Whenever a user knows a password, mutual authentication
should be used.	

o  Does not rely on user to spot spurious URLs.	

Authenticating
the session ID
authenticates the
endpoint

password-based
auth of user

and session ID

Authentication Example: ���
Password-based Mutual Authentication	

Authentication Example: ���
Signing a batch of session IDs to amortize RSA costs	

session ID: A	

“A”, signed by 	

amazon.com	
 RSA op	

session ID: B	

“B”, signed by 	

amazon.com	
 RSA op	

Authentication Example: ���
Signing a batch of session IDs to amortize RSA costs	

session ID: A	

session ID: B	
 session ID: D	

session ID: C	

“A,B,C,D” signed 	

by amazon.com	

“A,B,C,D” signed 	

by amazon.com	
RSA op	

SSL servers RSA decrypt each client’s secret:	

session ID: A	

session ID: B	
 session ID: D	

session ID: C	

“A,B,C,D” signed 	

by amazon.com	

“A,B,C,D” signed 	

by amazon.com	
RSA op	

enc(Secret A)	
 enc(Secret C)	

enc(Secret D)	
enc(Secret B)	

RSA op	

RSA op	
 RSA op	

RSA op	

Tcpcrypt���
in detail	

Outline of Tcpcrypt key exchange	

Key exchange is performed in the TCP
connection setup handshake.	

Key Scheduling	

Tcpcrypt in TCP Packets	

Crypto state can be cached. ���
Subsequent connections between the same endpoints get
similar latency to regular TCP.	

Key Scheduling 2	

Tcpcrypt���
Performance	

Tcpcrypt implementations	

n  Linux kernel implementation: 4,500 lines of code	

n  Portable divert-socket implementation: 7000 LoC	

o  Tested on Windows, MacOS, Linux, FreeBSD	

n  Binary compatible OpenSSL library that attempts
tcpcrypt with batch-signing or falls back to SSL. 	

kernel	

tcpcryptd	
 application	

Network	

Apache using tcpcrypt performs well.	

Hardware: 8-core, 2.66GHz Xeon (2008-era). 	

Software: Linux kernel implementation.	

Authentication over Tcpcrypt is fast.	

What would it take to encrypt all
the traffic on the Internet, by

default, all the time?	

Why tcpcrypt?	

n  Want to protect TCP packet headers.	

o  Defend against insertion attacks, etc.	

o  But still traverse NATs, firewalls that rewrite sequence

numbers.	

n  Want on-by-default encryption for existing unmodified apps to
protect against passive easesdropping.	

o  Fast enough to enable on all servers by default.	

o  Won’t break - downgrades to TCP if necessary.	

n  Easy incremental deployment story due to negotiation in TCP
handshake.	

Why tcpcrypt?	

n  Want to enable and encourage appropriate authentication above
tcpcrypt.	

o  Cert-based, mutual auth, PAKE, etc, as appropriate.	

o  Eg. can support connectbyname() in a shim library, and

leverage DANE for auth.	

n  Separation of layering provides flexibility.	

o  Eg. allows corporate firewall to do encryption and app to still

do authentication, so corporate IDS still works.	

•  tcpcryptd on firewall	

• RPC to get session ID.	

Summary: tcpcrypt can enable
ubiquitous transport level encryption	

n  High server performance makes encryption a realistic
default. 	

n  Applications can leverage Tcpcrypt to maximize
communication security in every setting.	

n  Incrementally deployable, compatible with legacy apps,
TCP and NATs.	

http://tcpcrypt.org"

Spare slides���
	

Connection setup latency is slightly increased due
to client-side RSA decrypt.	

Protocol	

LAN connect

time (ms)	

TCP	
 0.2	

tcpcrypt cached	
 0.3	

tcpcrypt not cached	
 11.3	

SSL cached	
 0.7	

SSL not cached	
 11.6	

tcpcrypt batch sign	
 11.2	

tcpcrypt CMAC	
 11.4	

tcpcrypt PAKE	
 15.2	

Most authentication can be done very cheaply,
once the Tcpcrypt session is established.	

Protocol	

LAN connect

time (ms)	

TCP	
 0.2	

tcpcrypt cached	
 0.3	

tcpcrypt not cached	
 11.3	

SSL cached	
 0.7	

SSL not cached	
 11.6	

tcpcrypt batch sign	
 11.2	

tcpcrypt CMAC	
 11.4	

tcpcrypt PAKE	
 15.2	

Batch signing does not add additional latency	

Data encryption is very fast on today’s CPUs	

