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What would it take to encrypt the vast majority
of TCP traffic?

Performance
* Fast enough to enable by default on almost all servers.
Authentication

* Leverage certificates, cookies, passwords, etc., to give best
possible security for any given setting.

Compatibility
* Works in existing networks

* Works with unmodified legacy applications



An observation on layering of crypto

m Encryption is a generic function.

1 Independent of the semantics of the application.

m Integrity Protection is a generic function.

0 VWhat arrives should be what is sent.

m Authentication Is strongly application-specific.

1 Depends on the semantics of the application.



An observation on layering of crypto

Observation: Encryption and Integrity Protection are lower-layer
functions than Authentication.

m Encryption and Integrity Protection are natural transport-layer
functions.

1 Cannot integrity-protect transport protocol from above it.

1 Different transport sessions have different security
requirements so cannot share encryption keys.

m Authentication is application-layer.







Tcperypt uses TCP options to provide deployable
transport-level encryption.

m High server performance - push complexity to clients
m Allow applications to authenticate endpoints.

m Backwards compatibility: all TCP apps, all networks, all
authentication settings.



Tcpcrypt overview

m Extend TCP in a compatible way using TCP options.

m [Xxisting applications use standard socket AP, just like
regular TCP,

1 Encryption automatically enabled if both end points
support Tcpcrypt.

m Extended applications can use a new getsockopt() for
authentication.
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After initial handshake, tcpcrypt’ s Session 1D
provides the hook to link application
authentication to the session.

m New getsockopt() returns non-secret Session ID value.

m Unique for every connection.

m [f same on both ends, guaranteed there’ s no man-in-the-middle.
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How to check the Session ID?
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m Out-of-band: e.g., phone call, other secure protocol.
m PKI: server signs Session [D.

m Pre-shared secret: send CMAC of Session ID, keyed
with Pre-shared secret.



Authentication Example:
Password-based Mutual Authentication

m VWhenever a user knows a password, mutual authentication
should be used.

1 Does not rely on user to spot spurious URLs.
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Authentication Example:
Password-based Mutual Authentication
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Authentication Example:
Signing a batch of session IDs to amortize RSA costs
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Authentication Example:
Signing a batch of session IDs to amortize RSA costs
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Outline of Tcpcrypt key exchange
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Key exchange is performed in the TCP
connection setup handshake.
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Key Scheduling
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Tcperypt in TCP Packets

src port dst port
seq no.
ack no.
d.off. | flags window checksum urg. ptr.
options (e.g., SACK) MAC option

1 MACed
B Encrypted




Crypto state can be cached.
Subsequent connections between the same endpoints get
similar latency to regular TCP.

crypto on

ack




Key Scheduling 2

W

RX MAC key

TX MAC key

Master key

RX enc. key

Session |ID

TX enc. key




Icperypt

Performance



Tcpcrypt implementations

m Linux kernel implementation: 4,500 lines of code
m Portable divert-socket implementation: /000 LoC
1 Tested on Windows, MacOS5, Linux, FreeBSD

tcperyptd application
7
J/ \—"
kernel

m Binary compatible OpenSSL library that attempts
tcperypt with batch-signing or falls back to SSL.




Apache using tcpcrypt performs well.
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Hardware: 8-core, 2.66GHz Xeon (2008-era).
Software: Linux kernel implementation.



Authentication over Tcpcrypt is fast.
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What would it take to encrypt all
the traffic on the Internet, by
default, all the time?



Why tcpcrypt!?

m Want to protect TCP packet headers.
1 Defend against insertion attacks, etc.

0 But still traverse NATs, firewalls that rewrite sequence
numbers.

m Want on-by-default encryption for existing unmodified apps to
protect against passive easesdropping.

1 Fast enough to enable on all servers by default.
1 Won't break - downgrades to TCP if necessary.

m [Fasy incremental deployment story due to negotiation in TCP
handshake.



Why tcpcrypt!?

m VVant to enable and encourage appropriate authentication above
tcperypt.
1 Cert-based, mutual auth, PAKE, etc, as appropriate.

1 Eg. can support connectbyname() in a shim library, and
leverage DANE for auth.

m Separation of layering provides flexibility.

1 Eg. allows corporate firewall to do encryption and app to still
do authentication, so corporate IDS still works.

* tcperyptd on firewall
* RPC to get session ID.



Summary: tcpcrypt can enable
ubiquitous transport level encryption

m High server performance makes encryption a realistic
default.

m Applications can leverage Tcpcrypt to maximize
communication security In every setting.

m [ncrementally deployable, compatible with legacy apps,
TCP and NATs.

http://tcpcrypt.org



Spare slides



Connection setup latency is slightly increased due
to client-side RSA decrypt.

LAN connect
Protocol

time (ms)
TCP 0.2
tcperypt cached 0.3
tcperypt not cached 1.3
SSL cached 0.7
SSL not cached 1.6
tcperypt batch sign 1.2
tcperypt CMAC 1.4
tcperypt PAKE 15.2




Most authentication can be done very cheaply,
once the Tcpcrypt session is established.

LAN connect
Protocol

time (ms)
TCP 0.2
tcperypt cached 0.3
tcperypt not cached 1.3
SSL cached 0.7
SSL not cached 1.6
tcperypt batch sign 1.2
tcperypt CMAC | 1.4
teperypt PAKE 5.2




Batch signing does not add additional latency
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Data encryption is very fast on today s CPUs
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