tcpcrypt:
real transport-level
encryption

Andrea Bittau, Mike Hamburg,
Mark Handley, David Mazieres,
Dan Boneh.

UCL and Stanford.

What would it take to encrypt the vast majority
of TCP traffic?

Performance
* Fast enough to enable by default on almost all servers.
Authentication

* Leverage certificates, cookies, passwords, etc., to give best
possible security for any given setting.

Compatibility
* Works in existing networks

* Works with unmodified legacy applications

An observation on layering of crypto

m Encryption is a generic function.

1 Independent of the semantics of the application.

m Integrity Protection is a generic function.

0 VWhat arrives should be what is sent.

m Authentication Is strongly application-specific.

1 Depends on the semantics of the application.

An observation on layering of crypto

Observation: Encryption and Integrity Protection are lower-layer
functions than Authentication.

m Encryption and Integrity Protection are natural transport-layer
functions.

1 Cannot integrity-protect transport protocol from above it.

1 Different transport sessions have different security
requirements so cannot share encryption keys.

m Authentication is application-layer.

Tcperypt uses TCP options to provide deployable
transport-level encryption.

m High server performance - push complexity to clients
m Allow applications to authenticate endpoints.

m Backwards compatibility: all TCP apps, all networks, all
authentication settings.

Tcpcrypt overview

m Extend TCP in a compatible way using TCP options.

m [Xxisting applications use standard socket AP, just like
regular TCP,

1 Encryption automatically enabled if both end points
support Tcpcrypt.

m Extended applications can use a new getsockopt() for
authentication.

P#;ln_@angnshmgmﬁms_tq\tqe client

Initial handshake:

No authentication. 2ration | Latency
Client decrypts. vt 0.26ms
rypt 10.42ms

Lets servers accept connections
36x faster than SSL

F /

Generate emp y pair:

public key

r ke Generate random master ke
enc,,, (master_ 4

client server

After initial handshake, tcpcrypt’ s Session 1D
provides the hook to link application
authentication to the session.

m New getsockopt() returns non-secret Session ID value.

m Unique for every connection.

m [f same on both ends, guaranteed there’ s no man-in-the-middle.

Session ID a

—lickey s
e key |

Session ID m

v

\J \
Alice Mallory Bob

How to check the Session ID?

Session ID a

—lickey s
e key |

Session ID m

\J \ \
Alice Mallory Bob

m Out-of-band: e.g., phone call, other secure protocol.
m PKI: server signs Session [D.

m Pre-shared secret: send CMAC of Session ID, keyed
with Pre-shared secret.

Authentication Example:
Password-based Mutual Authentication

m VWhenever a user knows a password, mutual authentication
should be used.

1 Does not rely on user to spot spurious URLs.

password-based
auth of user
and session ID

Authenticating
the session ID
authenticates the
endpoint

of America
—_——

tcpcrypt

Authentication Example:
Password-based Mutual Authentication

Session ID a

password %*

Publjc k
CMAC, X
W Session ID m

password
\

v v
Alice Mallory Bob

Authentication Example:
Signing a batch of session IDs to amortize RSA costs

< “A”, signed by
W 77\ amazon.com(RSA o
\\/L<session ID: A
| o
o < “B”, signed bb
\’é - amazon.com(RSA o
6&))\(/<session ID:B/

Authentication Example:
Signing a batch of session IDs to amortize RSA costs

Q7 INE %
e ot 5 58
W DY
i~ “AB,C.D” signe y
ﬁ%)/\ 77 by amazon.com RoA© Yy amazon.com

\f\}({j\(ﬁ session ID: B/ session |1D: D

>
™) ’AB,C,D” sign ~XABCD” signe 2
g\%i\ l’ by amazon.con] Yo)/ dMNaZ0N.COI] /‘\’ /p/
N session ID: B \\ /V/F

amaton’

h client’ s secret:

oA o

enc(Secret A)

RoA o)

enc(Secret B)

amazon

RSA op >
enc(Secret C)

RSA op > =0
enc(Secret D)
>

Icperypt

in detail

Outline of Tcpcrypt key exchange

ster key Generate random master key
enCpubk{M3

client Server

Key exchange is performed in the TCP
connection setup handshake.

SYN - CRYPT HELLO)
probe tcperypt

PKCONE)
SYN ACK - CRY::\E key sizes list

sublic Key ciphers

ACK -
Symmetric C"PhessKan dCIA?AYp T INITI)

crypto on

Key Scheduling

nash

RX MAC key

TX MAC key

Master key

RX enc. key

TX enc. key

Session ID

Tcperypt in TCP Packets

src port dst port
seq no.
ack no.
d.off. | flags window checksum urg. ptr.
options (e.g., SACK) MAC option

1 MACed
B Encrypted

Crypto state can be cached.
Subsequent connections between the same endpoints get
similar latency to regular TCP.

crypto on

ack

Key Scheduling 2

W

RX MAC key

TX MAC key

Master key

RX enc. key

Session |ID

TX enc. key

Icperypt

Performance

Tcpcrypt implementations

m Linux kernel implementation: 4,500 lines of code
m Portable divert-socket implementation: /000 LoC
1 Tested on Windows, MacOS5, Linux, FreeBSD

tcperyptd application
7
J/ \—"
kernel

m Binary compatible OpenSSL library that attempts
tcperypt with batch-signing or falls back to SSL.

Apache using tcpcrypt performs well.

70000
60,156 No sessions cached ==
» 60000 [All sessions cached m—
| -
g 50000 |-
Q
~§ 40000 |
§ 30000 |-
© 19,153 19,787
© 20000 |
c
3 10000 |
737
0
TCP tcperypt SSL
server

Hardware: 8-core, 2.66GHz Xeon (2008-era).
Software: Linux kernel implementation.

Authentication over Tcpcrypt is fast.

Connections/s

35000
30000
25000
20000
15000
10000

5000

27,070

26,395

no
auth

18,790

shared secret

1I418

certificates

754

—_—

weak password

SSL

What would it take to encrypt all
the traffic on the Internet, by
default, all the time?

Why tcpcrypt!?

m Want to protect TCP packet headers.
1 Defend against insertion attacks, etc.

0 But still traverse NATs, firewalls that rewrite sequence
numbers.

m Want on-by-default encryption for existing unmodified apps to
protect against passive easesdropping.

1 Fast enough to enable on all servers by default.
1 Won't break - downgrades to TCP if necessary.

m [Fasy incremental deployment story due to negotiation in TCP
handshake.

Why tcpcrypt!?

m VVant to enable and encourage appropriate authentication above
tcperypt.
1 Cert-based, mutual auth, PAKE, etc, as appropriate.

1 Eg. can support connectbyname() in a shim library, and
leverage DANE for auth.

m Separation of layering provides flexibility.

1 Eg. allows corporate firewall to do encryption and app to still
do authentication, so corporate IDS still works.

* tcperyptd on firewall
* RPC to get session ID.

Summary: tcpcrypt can enable
ubiquitous transport level encryption

m High server performance makes encryption a realistic
default.

m Applications can leverage Tcpcrypt to maximize
communication security In every setting.

m [ncrementally deployable, compatible with legacy apps,
TCP and NATs.

http://tcpcrypt.org

Spare slides

Connection setup latency is slightly increased due
to client-side RSA decrypt.

LAN connect
Protocol

time (ms)
TCP 0.2
tcperypt cached 0.3
tcperypt not cached 1.3
SSL cached 0.7
SSL not cached 1.6
tcperypt batch sign 1.2
tcperypt CMAC 1.4
tcperypt PAKE 15.2

Most authentication can be done very cheaply,
once the Tcpcrypt session is established.

LAN connect
Protocol

time (ms)
TCP 0.2
tcperypt cached 0.3
tcperypt not cached 1.3
SSL cached 0.7
SSL not cached 1.6
tcperypt batch sign 1.2
tcperypt CMAC | 1.4
teperypt PAKE 5.2

Batch signing does not add additional latency

SYN - HELLQ
ACK - INIT] |
RSA sign start
ACK - INIT2
RSA decrypt start e

connection ready

Data encryption is very fast on today s CPUs

Transfer rate (Mbit/s)

14000
12000
10000
8000
6000
4000
2000

12,954

8,835

TCP

AES-NI 3.33GHz i5 mmm -

tcperypt
AESNI
UMAC

tcperypt SSL
AES AES
SHA1 SHA1

