
PRECIS Framework
(draft-blanchet-precis-framework &

draft-saintandre-xmpp-6122bis)

Peter Saint-André
PRECIS WG

IETF 81, Québec City

1

1

Goals

• Build a usable framework for preparation and
comparison of i18n strings

• Provide Unicode agility

• Define common string classes

• Enable protocols to subclass if needed

• Leave "mapping" (case, normalization, bidi) up to
using protocols

2

2

Framework

• Same principles as IDNA2008

• Algorithmic categories based on properties of
Unicode code points (big character tables at
IANA are informative, not normative)

• Agility w.r.t. Unicode versions

• Reuse IDNA "categories" where possible

• Define new categories where necessary

3

3

String Classes

• NameClass – for usernames, filenames, and other
"mnemonics"

• SecretClass – for passwords, passphrases, and
other secrets

• FreeClass – for nicknames, display names, and
other free-form strings

4

4

NameClass: PVALID

• Letters

• Digits

• Any character in 7-bit ASCII range (even if
GeneralCategory otherwise disallowed)

5

5

NameClass: DISALLOWED

• Control characters

• Space characters

• Symbol characters

• Punctuation characters

• Any character with a compatibility equivalent

6

6

NameClass: Mapping

• Case: up to application protocol

• Normalization: up to application protocol,
but NFC recommended (cf. RFC 5198)

• Bidi: up to application protocol

7

7

SecretClass: PVALID

• Letters

• Digits

• Any character with a compatibility equivalent

• Any character in 7-bit ASCII range (even if
GeneralCategory otherwise disallowed)

8

8

SecretClass: DISALLOWED

• Control characters

• Space characters

• Symbol characters

• Punctuation characters

9

9

SecretClass: Mapping

• Case: up to application protocol, but case
preservation recommended to maximize entropy

• Normalization: up to application protocol,
but NFC recommended (cf. RFC 5198)

• Bidi: up to application protocol

10

10

FreeClass: PVALID

• Letters

• Digits

• Space characters

• Symbol characters

• Punctuation characters

• Any character with a compatibility equivalent

11

11

FreeClass: DISALLOWED

• Control characters

12

12

FreeClass: Mapping

• Case: up to application protocol

• Normalization: up to application protocol,
but NFC recommended (cf. RFC 5198)

• Bidi: up to application protocol

13

13

Case Study: XMPP

• Two identifiers: localpart and resourcepart

• Localpart subclasses NameClass to prohibit special
characters, case folding to lowercase, NFC (?), any
RTL character makes entire string RTL

• Resourcepart uses FreeClass without subclassing,
case preserved, NFC (?), any RTL character makes
entire string RTL

• Use of PRECIS is easy, the hard part is migration

14

14

Open Issues
• Have we defined the right string classes?

• Have we defined them correctly?

• What are the benefits and hazards of subclassing?

• Do we need special handling for full-width and
half-width code points in certain Asian scripts?

• Should we make mapping recommendations?

• Do we need BackwardCompatible lists for future
breaking changes in Unicode property?

15

15

