PRECIS Framework

(draft-blanchet-precis-framework &
draft-saintandre-xmpp-6122bis)

Peter Saint-Andre
PRECIS WG
IETF 81, Quebec City



Goals

Build a usable framework for preparation and
comparison of il8n strings

Provide Unicode agility
Define common string classes
Enable protocols to subclass if needed

Leave "mapping” (case, normalization, bidi) up to
using protocols



Framework

® Same principles as IDNA2008

® Algorithmic categories based on properties of
Unicode code points (big character tables at
JANA are informative, not normative)

® Agility w.r.t. Unicode versions
® Reuse IDNA "categories” where possible

® Define new categories where necessary



String Classes

® NameClass — for usernames, filenames, and other
"mnemonics”

® SecretClass — for passwords, passphrases, and
other secrets

® FreeClass — for nicknames, display names, and
other free-form strings



NameClass: PVALID

® |etters
® Digits

® Any character in 7-bit ASCII range (even if
GeneralCategory otherwise disallowed)



NameClass: DISALLOWED

® Control characters

® Space characters

® Symbol characters

® Punctuation characters

® Any character with a compatibility equivalent



NameClass: Mapping

® (Case: up to application protocol

® Normalization: up to application protocol,
but NFC recommended (cf. RFC 5198)

® Bidi: up to application protocol



SecretClass: PVALID

Letters
Digits
Any character with a compatibility equivalent

Any character in 7-bit ASCII range (even if
GeneralCategory otherwise disallowed)



SecretClass: DISALLOWED

® Control characters
® Space characters
® Symbol characters

® Punctuation characters



SecretClass: Mapping

Case: up to application protocol, but case
preservation recommended to maximize entropy

Normalization: up to application protocol,
but NFC recommended (cf. RFC 5198)

Bidi: up to application protocol

10



FreeClass: PVALID

Letters

Digits

Space characters
Symbol characters
Punctuation characters

Any character with a compatibility equivalent

11



FreeClass: DISALLOWED

® Control characters



FreeClass: Mapping

® (Case: up to application protocol

® Normalization: up to application protocol,
but NFC recommended (cf. RFC 5198)

® Bidi: up to application protocol

13



Case Study: XMPP

Two identifiers: localpart and resourcepart

Localpart subclasses NameClass to prohibit special
characters, case folding to lowercase, NFC (?), any
RTL character makes entire string RTL

Resourcepart uses FreeClass without subclassing,
case preserved, NFC (?),any RTL character makes
entire string RTL

Use of PRECIS is easy, the hard part is migration

14



Open Issues

Have we defined the right string classes!?
Have we defined them correctly?
What are the benefits and hazards of subclassing?

Do we need special handling for full-width and
half-width code points in certain Asian scripts?

Should we make mapping recommendations?

Do we need BackwardCompatible lists for future
breaking changes in Unicode property?

15



