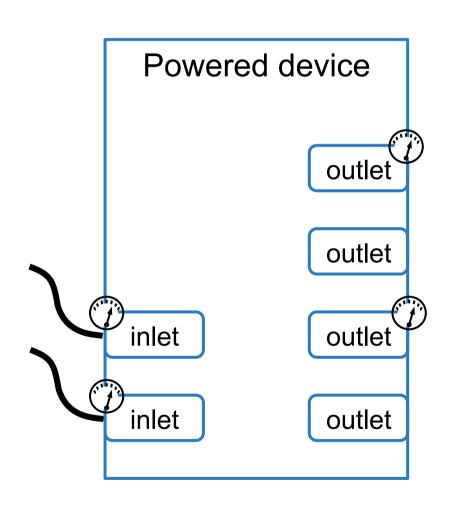
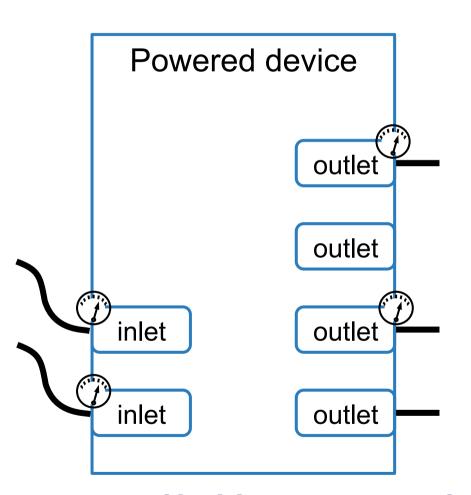
Reference Model for Energy Management Version 2


draft-quittek-eman-reference-model-02

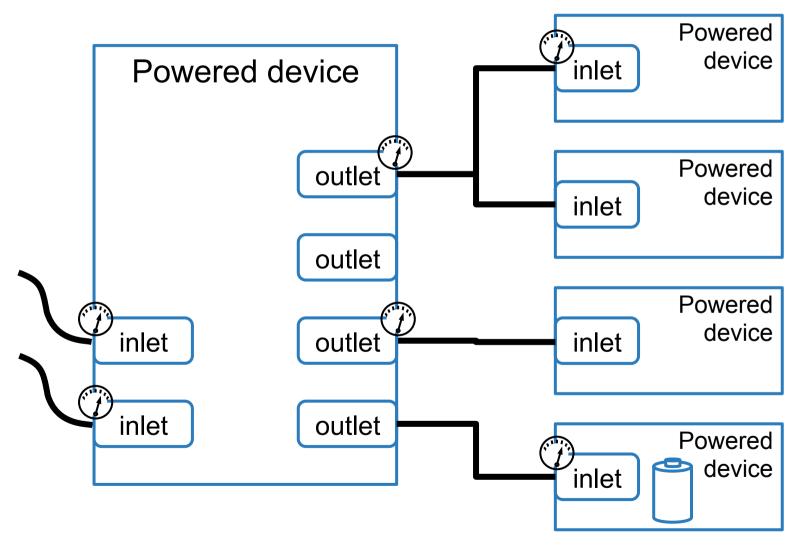
J. Quittek, B. Nordman

Motivation


- Energy Management is still a new thing to the IETF
- We are heavily discussing concepts and models
- This is not an easy search
 - all drafts with models changed substantially since Prague
- So far our main problem has been modeling devices reporting on other devices
 - this is not very common in network management
 - we tried to model this in the eman framework draft and in previous versions of this draft
 - we needed new concepts (parent/child; power monitor/power controller, etc.)
- Is this really what we need? No easier way?
- Here is a proposal

What are we managing?

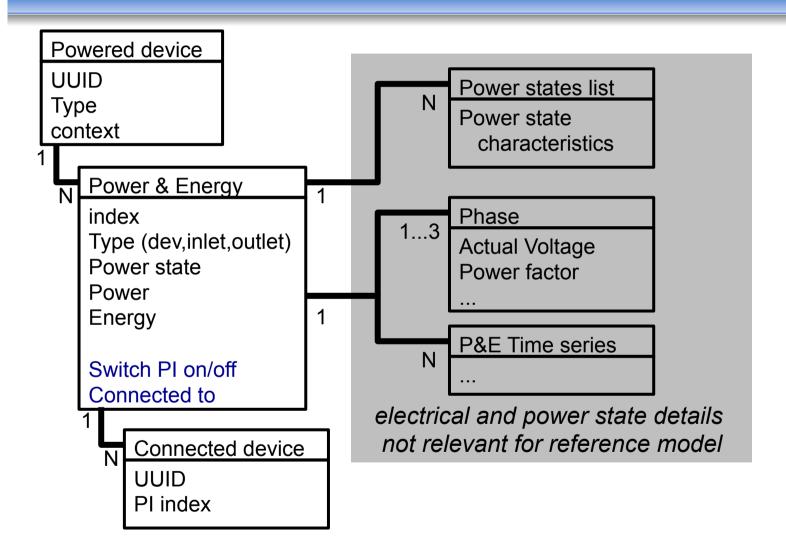
- Powered devices are boxes
- They receive power at a power interface (PI)*
 - derived from IEEE PoE 802.af/at
- The power interface connects the device to a power transmission medium
 - often called 'wire' or 'cord'
- A power interface can be an inlet or an outlet
 - on the left it is obviously an inlet
- May measure power at Pls
- Devices may be able to switch power at PIs


What does a device report about itself?

- On the device
 - ID, type, context, etc.
 - power state
 - total net power
- On Power interfaces
 - power at inlets
 - power at outlets (if present)
- Topology
 - connected other devices per power interface (as far as known)

Nothing more needed!

Power Topology: Connected Interfaces


Power Topology: Connected Interfaces

- Power outlets can be connected to power inlets
- Pls may provide a list of Pls of other devices connected to it
- If we meter power at an PI we may derive information on connected devices
 - this works in both directions
- Metering at one interface may not necessarily give precise information on other connected interfaces.
 - there may be more than one other PI connected
- You can switch on and off PIs
 - but the effect is not always predictable
 - it is not always clear which other device is affected
 - when power is switched off, connected devices may run on battery

How to report on other devices?

- There may be need to represent non-IP devices (connectivity)
- There may be need to represent other IP devices (scalability)
- •
- The result is that
 - one device (parent) reports for one or more other devices (children)
 - one device (parent) accepts control commands commands for other devices (children)
- This is independent of electric connectivity
 - who provides power to whom is a different story
- This is on top of the model shown on previous slides
- And this is independent of energy management
 - You can do this for any MIB module
- If a device reports on another one it uses the same structure as for reporting for itself
 - simplicity & re-use
- In such a case it acts as proxy and/or concentrator

Result: Simple Information Model

Conclusion

- The reference model based on the concept of power interfaces seems to be a better choice than the ones discussed so far
- It is simpler
 - easy to understand and work with
 - it is closer to concepts we have a lot of experience with
 - Network interface <---> Power interface
 - the resulting MIB module will be simpler
 - it is in line with IEEE PoE 802.3af/at
 - it does not make any assumption about topology
 - it avoids creating unnecessary relationships between devices
- It is more flexible
 - you can build the parent/child model on top of it
 - you can build others on top, such as reference-model-01