
URIs for Named Information
draft-farrell-ni

Stephen Farrell
stephen.farrell@cs.tcd.ie

Crhistian Dannewitz
cdannewitz@upb.de

Borje Ohlman
Borje.Ohlman@ericcson.com

Dirk Kutscher
kutscher@nec.de

mailto:stephen.farrell@cs.tcd.ie
mailto:stephen.farrell@cs.tcd.ie
mailto:cdannewitz@upb.de
mailto:cdannewitz@upb.de
mailto:Borje.Ohlman@ericcson.com
mailto:Borje.Ohlman@ericcson.com
mailto:kutscher@nec.de
mailto:kutscher@nec.de

Motivation

• Emerging need for naming resources uniquely

• Without any notion of location -- IP addresses, domain names don’t
work

• P2P applications and DECADE

• Replicating objects (and their fragments)

• Need a way to identify them uniquely

• But in a location-independent way

• DECADE architecture:

• The name of a data object is derived from the hash
over the data object's content (the raw bytes),
which is made possible by the fact that DECADE
objects are immutable.

Naming in DECADE

• Architecture describes naming requirements
and fundamental concepts

• Each DECADE protocol spec expected to provide
details on format and semantics

• DECADE architecture naming scheme

• type: indicates that the name is the hash of the

data object's content and the particular hashing
algorithm used

• content hash: by applying the algorithm and
(possibly) a specific presentation format

Deployment Considerations

• In DECADE we are mainly interested in uniqueness property

• DECADE servers should not be required to calculate the hash

• Just use the name for identification, de-duplication etc.

• As crypto algorithms evolve, we will see different types of names

• Also: different P2P apps might evolve to use different types

• DECADE implementations should be able to use those names, without
understanding all possible variations (if hash calculation is not used)

• Want a Uniform Format – allowing for

• Representing and using all names

• Understanding the semantics (for checking hashes by applying the right
crypto algorithm)

How/Examples
 DECADE and other protocols for naming information objects need names,

but keeping it simple is required; URIs seem an obvious choice

 Or...maybe URNs?

 Sometimes, you might want a name to include a hash of something; used in
many applications, each invents its own way to do that, good to standardise

 No implication that applications MUST check anything; algorithm-agility; can
specify input to hash; can specify “inner” content type if hash input was an
envelope

 This 11-page I-D defines a way to include hashes in HTTP-like URIs

 ni://tcd.ie/cs8053-exam-2012

 ni:///weather-in-dublin-today

 ni://tcd.ie/sha256:NDVmZTMzOGVkY2JjZGQ0ZmNmZGFlODQ5MjkyZDM0Z
Tg2ZDI5YzllMmU5OTFlNmE2Mjc3ZTFhN2JhNmE4ZjVmMwo

 ni://sha256:NDc0NzgyMGVmOGQ3OGU0MmI2MWYwZjY3MDAzNDJmZTY0Nzhh
MGY0OTBhMDRiNzA0YTY0MWY0MzVkODQzZWUxMAo:id:sshpk/thing

 ni://tcd.ie/sha256:NDVmZTMzOGVkY2JjZGQ0ZmNmZGFlODQ5MjkyZDM0Z
Tg2ZDI5YzllMmU5OTFlNmE2Mjc3ZTFhN2JhNmE4ZjVmMwo:signeddata:ap
plication%2Fjpeg

To-Do/Process/An Ack

 I-D:

 More on truncated hashes

 New URI scheme (ni:) or URN?

 Maybe define a few things that could be hashed

 Process:

 DECADE might adopt, or try get this AD-sponsored

 Not keen to try spin up a naming WG

 ACK: Work funded by FP7 SAIL project

 So we'll be coding this up (or whatever emerges as the right
thing)

Backup: ABNF

ni-name = scheme ":" hier-part

hier-part = "//" [authority] "/" *(local-part "/") ["/"]
scheme = "ni"

authority = hash-string | other-string ;(delimiters %-encoded)
local-part = hash-string | other-string ;(delimiters %-encoded)

hash-string = hashalg ":" b64value
[":" function-identifier [":" mime-type]]

hashalg = identifier
function-identifier = identifier

identifier = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
mime-type = type %2f subtype
...

