A Framework for Management and Control of Optical Interfaces supporting G.698.2

draft-kunze-g-698-2-management-control-framework-00

Ruediger Kunze

Manuel Paul

Deutsche Telekom

Motivation

- Define a Framework for the Control and Management of Optical Interfaces according to the Black Link approach
 - Develop Enhancements for Control & Management to leverage the Black Link approach in carrier networks in large-scale
 - Use Case: Improved Interworking between third party systems
 e.g. Router <-> DWDM <-> Router
 - Support Status-Quo as well as future network management and control concepts
- Black Link according to ITU-T G.698.2 provides options to deploy Optical Interfaces in a WDM network
 - currently defined up to 10G
 - being extended by ITU-T for 40G, 100G and beyond
 - primarily intended for metro applications (i.e. up to 600km reach)

Recap: G.698.2 in a colored Nutshell

Black Link: The Black Link approach [ITU-T G.698.2] allows supporting an optical transmitter/receiver pair of one or different vendors to inject an Optical Channel (OCh) and transfer it over a DWDM network composed of amplifiers and add-drop multiplexers from a different vendor. Therefore the standard defines the ingress and egress parameters at the reference points Ss and Rs.

G.698.2 provides an optical interface specifications towards the realization of transversely-compatible dense wavelength division multiplexing (DWDM) systems primarily intended for metro applications which include optical amplifiers." => towards "multivendor DWDM optical transmission networks"

Document Scope and Perspective

- Solutions for Control and Management of Optical Interfaces
 - Operational Scenarios and Uses Cases
 - Requirements for Black Link deployments
- Interoperable Control and Management Solutions required
 - Supporting multivendor transverse interoperability DWDM networking
 - Considering just one optical network operator (i.e. one administrative domain)
 - Data Plane under consideration is well-defined and standardized (ITU-T G.698.2)
 - IETF work focuses on the control and management aspects for the optical interface / optical system (excluding active optical components)
- WSON work is complementary
- Alignment with work going forward in ITU-T

Solution initially in Focus

➤ Optimized interconnection of client nodes to the optical transport network, being all in the same administrative domain (intra-domain)

Tp – Transponder (eliminated)

EMS – Element Management System

NMS - Network Management System

Current Status & Modifications

- Presented first time at the last meeting in Prague
- Feedback from the WG chairs
 - Renaming the document
 - Base management and control extensions on existing ITU-T standards
- Work introduced to and discussed with ITU-T

Addressed the feedback from the working group and from ITU-T

ITU-T Discussion Results

- Black Link contributions for the recent ITU-T Chicago interim
 - General proposal to progress BL work in ITU-T Q9, Q12, Q14 of SG15;
 beyond optical specifications being in the works by Q6
 - Equipment Functions, Architecture & Features of Black Links (Q9, Q12)
 - Protocol neutral Black Link Management models (Q14)
 - Black Link will be subject of next SG15 Plenary Coordination Meeting
- Clarifications from ITU-T discussions for the IETF activities
 - Documents at IETF will focus on the management and control of optical interfaces based on existing ITU-T standards (ITU-T G.698.2)
 - Management of the WDM network part of Black Links is out of scope

Next Steps

- Proposal to home/base this work in CCAMP, along with related Black Link work at ITU-T
- Feedback from Operators and Vendors invited
 - Requirements
 - Use cases and deployment scenarios
- Progress work on Use Cases and Requirements

Corresponding MIB document in progress