
DTN Erasure Coding
Extension Block Specification
IETF 81: DTNRG Presentation (Extended)

Dr. John Zinky
Dr. Armando Caro
Dr. Greg Stein
jzinky@bbn.com
acaro@bbn.com
gstein@ece.umd.edu

July 25, 2011 This material is based upon work under contract with the US Government.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and may not necessarily reflect the views of the US Government.
This material is approved for public release by the US Government.
Distribution is unlimited.

© 2011 Raytheon BBN Technologies, All rights reserved.

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 2

Problem Statement:

•  Transfer a large file over a disrupted network.
•  Short contact times between BPA rendezvous may not be long enough to

send the whole file.
The sender must partition the file, which may be sent over multiple DTN paths.
The partitions can be shuffled, duplicated, and dropped along the DTN path.
The application transfer specification may imposed limitations on the amount of

the file that can be required for each contact, link, BPA, or path, to meet quality
of service (QoS) and content exposure requirements.

•  The file sender needs NO feedback about the file transfer.
No E2E acknowledgement is expected.
Reliable transfer depends on existing DTN reliability and timeout mechanisms.
Open-Loop flow control depends on existing DTN buffering.
Feedback-based flow and congestion control needs to define an additional control

protocol not included in this specification.
 e.g. End-to-End Stop, Store-and-Forward Purge

7/25/2011 3 © 2011 Raytheon BBN Technologies

Eraser Coding Extension Protocol:
1.  Erasure Coding Extension Protocol partitions the file into multiple

chunks and encodes the chunks using one of many Erasure
Correction schemes. The encoded bundles can be further
partitioned using the existing bundle fragmentation protocol.

2.  Eraser Coding Extension Protocol can send a linear combination
of file chunks and the receiver recovers the original chunks by
solving the resulting set of equations.

3.  Erasure Coding effectively makes every bundle equivalent,
removing dependency on bundle delivery order, drop, or
duplication.

4.  File content is fixed size, known before the transfer begins,
and every bit must be delivered within the timeout or the
transfer has no mission utility. The file is not a stream, nor are
some parts of the file more important than other parts, i.e. every bit
of the file has the same reliability and latency requirements.

NOTE: The term, File, refers to a fixed sized application data block that a DTN application needs
to send. It may or may not actually be a file on the sending host’s file system.

7/25/2011 4 © 2011 Raytheon BBN Technologies

Goals:

1.  The Erasure Coding Extension Protocol should be transparent to
legacy BPAs and DTN Applications.
–  The existing fields in the bundle header will work as defined, with no extended

functionality.
–  Bundle-layer routing, timeouts, bundle uniqueness, priority, and fragmentation,

will work as specified in RFC 5050.

2.  Only Expose information to protocol layers that can act on the
information
–  Set BPA header fields for effective End-to-End transfer characteristics.
–  Expose a bundle extension block with meta data that will increase effectiveness

of Store-and Forward transfer across a DTN network.
–  File meta data for a destination is only encoded in the file payload.

3.  BPA-layer extensions increase store-and-forward efficiency by
supporting different transfer options:
–  Routing: multiple destination types: unicast, multicast, geographic.
–  Session: detect duplicate or redundant encodings.
–  QoS : rate limit, redundancy limit, end-to-end stop, store and forward purge.

7/25/2011 5 © 2011 Raytheon BBN Technologies

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 6

Architectural Components
•  Source Application

–  Originates a File for transmission
•  Destination Application

–  Receives the File
•  Source Encoder

–  Encodes an Annotated File into a set of Encodings for transmission
•  Destination Decoder

–  Decodes a set of Encoding to retrieve the Annotated File
•  Intermediate Encoder

–  Change order, count, duplicate, drop, route Encoding Bundles
•  Intermediate Re-Encoder

–  Create new encodings from existing encodings without decoding
•  Bundle Forwarder

–  Knows nothing about Encodings, just forwards bundles

NOTE: The term, File, refers to a fixed sized application data block that a DTN application needs to send. It may
or may not actually be a file on the sending host’s file system.

7/25/2011 © 2011 Raytheon BBN Technologies 7

Source	 Applica-on	

Encoding Application Architecture

BPA	 App	 API	

Source	
Encoder	

Bundle	
Forwarder	

Spread Merge Transport Generate

File	

Reconstitute

Bundles	 Bundles	 Bundles	

Intermediate	
Encoder	

File	
Metadata	

7/25/2011 8 © 2011 Raytheon BBN Technologies

File	 Transfer	
Spec	

BPA	 App	 API	

File	 Transfer	
Spec	

Intermediate	
Re-‐Encoder	

Intermediate	
Encoder	

Encodings	 Encodings	

Bundle	
Forwarder	

Annotated File Transfer

End-to-End Encoding Transfer

File Transfer

Annotated	
File	

Encoding	
Bundles	

Des-na-on	 App	

Des-na-on	
Dncoder	

File	 File	
Metadata	

Annotated	
File	

Encoding	
Bundles	

Encoding	
Bundles	

Encoding	
Bundles	

Hop-by-hop Encoding Bundle Transfer

Bundle	
Forwarder	

BPA	 App	 API	

Source	 Applica-on	

Large-Bundle BPA Encoder Architecture

Source	
Encoder	

Bundle	
Forwarder	

Spread Merge Transport Generate

File	

Reconstitute

Bundles	
Bundles	 Bundles	

Intermediate	
Encoder	

DTN	 	 Appl	 API	
Parameters	

7/25/2011 9 © 2011 Raytheon BBN Technologies

File	 Transfer	
Spec	

File	 Transfer	
Spec	

Intermediate	
Encoder	

Encodings	 Encodings	

Bundle	
Forwarder	

Annotated File Transfer

End-to-End Encoding Transfer

File Transfer Des-na-on	 App	

Des-na-on	
Decoder	

File	 Bundle	
Header	

BPA	 App	 API	

Large-‐Bundle	
(Annotated	 File)	

Large-‐Bundle	
(Annotated	 File)	

Encoding	
Bundles	

Encoding	
Bundles	

Encoding	
Bundles	

Encoding	
Bundles	

Hop-by-hop Encoding Bundle Transfer

Bundles	

Intermediate	
Re-‐Encoder	

Bundle	
Forwarder	

Bundles	

Transfer Specification

File Transfer Spec gets translated onto Bundle Fields and
Erasure Coding Extension Block

File Transfer Spec could include:
–  Destination
–  End-to-End File Transfer Timeout
–  Progress Reports
–  Privacy
–  Efficiency
–  Resource consumption limits

7/25/2011 © 2011 Raytheon BBN Technologies 10

Source	
Applica-on	

Des-na-on	
Applica-on	

File	 File	

File	 Transfer	
Spec	

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 11

Chunk	 Chunk	

Decomposition for File into Bundles

File	

Chunk	

Bundle	

Encoding	

Fragment	

128MB, Compressed

N=256
Length = 500KB

500KB Data

500KB Payload

64KB (8 fragments)

File partitioned into N Chunks

Chunks Linearly Combined into an Encoding

 256bit Vector

32byte Extension block

One Encoding sent per Bundle

Bundle Fragment size based on CLA restrictions

Fragment	 Fragment	

File Transfer Characteristics:
All bits must be received before timeout, or file transfer has no mission utility.
All bits are known before start of transfer.

7/25/2011 12 © 2011 Raytheon BBN Technologies

Example:

Constructing an Encoding from Chunks

1.  Partition the File and File Meta
data header into N Chunks.

2.  Pad the last Chunk with random
bits, to make all Chunks the
same length.

3.  Generate an Encoding Vector.
1 in ith slot means include Chunki

0 in ith slot means exclude Chunki

4.  XOR together included Chunks
to form the Encoding Data.

This operation is called a Binary Dot
Product of Encoding Vector with
Chunks Vector

5.  The resulting Encoding includes
both the Vector and Data.

Chunks (N=10)

Padding File	

Encoding Vector (Vi)

Encoding Data (Di) Di	

Par--on	

XOR	

1	 0	 0	 0	 1	 0	 1	 0	 1	 1	

Fun Facts:
•  Two Encodings are equal, if their
vectors are equal.
•  Hamming Weight is the number of 1’s
in the Encoding Vector.
• At least N Encodings are needed to
reconstitute all the original Chunks

File Header

7/25/2011 13 © 2011 Raytheon BBN Technologies

Exposed File Meta Data:
 File UUID

C1	 C2	 C3	 C5	 C4	 C6	 C7	 C8	 C10	 C9	

Random Binary Code Example:

Constructing a new Encoding from Existing
Encodings

1.  Multiple Encodings
can be combined into
a new Encoding.

2.  XOR the Encoding
Data together.

3.  XOR the Encoding
Vectors together.

4.  The resulting Data and
Vector forms a new
Encoding.

Encoding Vector Encoding Data

D3	

XOR	

1	 0	 0	 0	 1	 0	 1	 0	 1	 1	

D1	 D2	 1	 0	 0	 1	 0	 0	 1	 0	 0	 0	

XOR	

1	 0	 1	 1	 0	 0	 1	 0	 1	 1	 Dk	

1	 0	 1	 1	 1	 0	 1	 0	 0	 0	

Fun Facts:
• If both Hamming weights < N/2, then
resulting weight is expected to be greater
• If both Hamming weights > N/2 then
resulting weight is expected to be less
• If both Hamming weights = N/2 then
resulting weight is expected to be N/2

7/25/2011 14 © 2011 Raytheon BBN Technologies

Vk

V3
V2

V1

Random Binary Code Example:

Inverse	
Encoding	
Matrix	

Reconstituting an Encoding Set back into a File

Vector1	
Vector2	

…	
VectorN	
VectorN+1	
VectorN+2	

N

Redundant

Encoding Set

Expected to be ~2
[Wow a constant!
That’s not intuitive]

=
D1	
D2	

…	
DN	

Rank = N

Data1	
Data2	
…	

DataN	
DataN+1	
DataN+2	

Gaussian	
	 Elimina-on	

Binary Dot Product of a
row of the Inverse
Encoding Matrix with
Vector of Encoding
Data yields a Chunk

Chunk1	
Chunk2	

…	
ChunkN	

Redundant Data
Discarded

File

Encoding split into
Encoding Data and
Encoding Vector

Fun Facts:
If Rank = N, then Encoding Set can be used to decode all the chunks in the file.
If Rank < N, then all chunks can not be decoded, but some may be decoded

7/25/2011 15 © 2011 Raytheon BBN Technologies

C1	
C2	
…	
CN	

Ordered Chunks form the File

Vector of Encoding Data Encoding Matrix

Vector of Chunks

N

Random Binary Code Example:

Reconstituting a Chunk from Encodings

D1	 D2	 D3	 D5	 D4	 D6	 D7	 D8	 D10	 D9	

Vector of Encoding Data (N=10)

Rowi of Inverted
Encoding Matrix

Chunki Ci	

XOR	

1	 0	 0	 0	 1	 0	 1	 0	 1	 1	

7/25/2011 16 © 2011 Raytheon BBN Technologies

•  Each Encoding Vector Vm is added
as a Rowm into an Encoding Matrix

–  The matrix is M rows by N
columns, where M>=N.

•  The Encoding Matrix is inverted
into the Inverted Encoding Matrix
(NxN).

–  If the Encodings are not full rank,
(Rank < N), the inverse will not be
found, so wait for more Encodings
and try again.

–  A Linear algebra package can be
used to invert the Encoding Matrix

•  Perform the Binary Dot Product
operation on Rowi of the inverted
Encoding Matrix with the Vector of
Encoding Data, to yield Chunki

Random Binary Code:

Random Binary Code

7/25/2011 © 2011 Raytheon BBN Technologies 17

•  The expected number** of random binary encodings needed
to solve for all chunks is N + ε, where ε ≈ 1.6

* Randomly receive a new fragment with replacement.
** V.F. Kolchin, Random graphs, Cambridge University Press (1999).

Bundle Fragmentation in a
shuffled environment* is
equivalent to the coupon
collector’s problem.

Many random fragments are
need to be received to get all
fragments.

For example, the probability of
getting the last fragment is 1/N

Expect number 0(n log(n)) or ≈
600

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 18

Multiple Headers used for Full EC Protocol

7/25/2011 © 2011 Raytheon BBN Technologies 19

Header Payload

Encoding Bundle

Ext Blocks

Bundle	 Header	 Fields	

	 Erasure	 Coding	 Extension	 Block	 	

Standard	 Extension	 Blocks	

Payload	 Data	

Header Payload

Encoding Bundles ….

Ext Blocks

Header Payload

Encoding Bundle

Ext Blocks

Decode	

File	 Header	

File	 Data	

Padding	

File

Place	 Accessible	 Fragments	 Example	

Bundle	 Header	 Fields	 Bundle	 forwarder	 and	 all	 Encoders	 Every	 fragment	 Transfer	 Spec	

Erasure	 Extension	 Block	 Encoder,	 Decoder,	 Intermediate,	 Re-‐coder	 Once	 per	 EC	 bundle	 Encoding	 Vector	

Standard	 Ext	 Block	 Bundle	 forwarder	 and	 all	 Encoders	 Once	 per	 EC	 bundle	 Sender	 Signature	

Payload	 Data	 Encoder,	 Decoder,	 	 Re-‐coder	 Once	 per	 EC	 bundle	 Encoding	 Data	

File	 Header	 Encoder,	 Decoder	 Once	 per	 File	 File	 Name,	 Length	

File	 Data	 Encoder,	 Decoder	 Once	 per	 File	 File	 Content	

Padding	 Ignored	 by	 Decoder,	 Once	 Per	 File	 Ignored	

Erasure Coding (EC) Extension Block

7/22/11 © 2010 Raytheon BBN Technologies 20

Block Type: 0xEC
 Not a metadata extension block.

Proc. Flags: 0x00
Block Length: SDNV

 Length of extension block data.
Version: SDNV

 EC Extension Block version which increments with newer versions
Next Encapsulated Protocol: SDNV

 Specifies protocol (i.e., data type) of original data (e.g., bundle, app datagram, app stream).
 Defines format for encoding bundle payload and decoded chunks.
 Note: similar to IP’s “Protocol” field and used by Destination Decoder.

Encoding Set ID: UUID (128bits) [RFC 4122]
 Universally Unique ID for encodings that represent the same data chunks
 Next Encapsulated Protocol can use a hash function to map their GUID to ECID

Handling Spec: SDNV
 Hints on how intermediate routers should order, prioritize, or drop this encoding relative to other encoding
bundles with the same Encoding Set ID. (Undefined for Version 1)

Number of Chunks: SDNV
 Number of chunks in Encoding Set, if 0 then no maximum number of chunks (e.g. stream)

Encoding Vector Format : SDNV
 Number of format type used to to interpret Encoding Vector

Encoding Vector: Bytes
 Determined by EV Format

Encoding Vector Formats

Full Vector (1): Good for dense vectors
–  Vector (bytes) length is Ceiling(Number of Chunks / 8)
–  Binary Vector over the GF(2) Field

List of Chunk Indexes (2): good for sparse vector with large number of
chunks

–  List length <SDNV>
–  [chunk index<SDNV>, chunk index<SDNV>, ….]
–  Binary Vector over the GF(2) Field

Start/Extent (3): Good when coefficients are clustered, e.g. blocks or windows
–  Start chunk number <SDNV>
–  Coefficients byte array <length <SDNV> bytes>
–  Binary Vector over the GF(2) Field

Other Fields or Rings (TBD): Different Tradeoffs than Random Binary Code
–  Encoding and Decoding time and storage
–  Expected number of encodings needed to solve.

7/22/11 © 2010 Raytheon BBN Technologies 21

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 22

File Format:

7/22/11 © 2010 Raytheon BBN Technologies 23

Type:	 4	 Bytes:	 0xECECECEC	
	 Indicates	 	 File	 Header	 type	

Version:	 4	 Bytes:	 0x01	
	 version	 number	 of	 header	 which	 increments	 with	 newer	 versions	

Format:	 4	 Bytes:	 0x01	

	 Length	 of	 extension	 block	 data.	
File	 UUID:	 128	 bits	

	 Must	 match	 Encoding	 Set	 UUID	 in	 Erasure	 Coding	 Extension	 Block 	
File	 Length:	 128	 bits	

	 Length	 of	 file	 in	 bytes	
File	 Name:	 String	

	 String	 Length:	 4	 Bytes	
	 String	 Bytes:	 byte	 array	

	 SFng	 Terminator:	 byte	 0x00	
Path	 Name:	 String	

	 String	 Length:	 4	 Bytes	

	 String	 Bytes:	 byte	 array	
	 SFng	 Terminator:	 byte	 0x00	

File	 Data:	 byte	 array	
	 Data	 bytes	 for	 the	 file	 data,	 length	 is	 File	 Length	

Padding:	
	 Extra	 Bytes	 needed	 to	 pad	 last	 Chunk	 to	 be	 full	 chunk	 length 	

File Transfer Spec Mapping to Bundle Headers

7/25/2011 © 2011 Raytheon BBN Technologies 24

Name	 Type	 Header	 DescripFon	

Des-na-on	 EID	 Bundle	 Place	 to	 send	 file	

Class	 of	 Service	 Int	 Bundle	 Prioity	

Expire	 Time	 Int	 Bundle	 For	 the	 File	 (LifeTime	 +	 Crea-on	 Time)	

Hop	 Limit	 Int	 Bundle	 Possible	 RFC	 5050	 extension.	

Send	 Stop	 flag	 Bundle?	
File?	

Request	 Acknowledgement	 Field	 	
File	 header	

Report	 Progress	 flags	 Bundle	 Report	 progress	 flags	 for	 each	 bundle	

Number	 of	 Chunks	 Int	 Extension	 Keep	 small	 to	 reduce	 decode	 -me	

Chunk	 Length	 Int	 Extension	 Keep	 small	 to	 avoid	 fragmenta-on	

Percentage	 Redundancy	 Int	 Extension	 Keep	 redundancy	 small	 for	 efficiency	 	

Contact	 Limit	 Int	 Extension	 Rate	 or	 amount	 or	 percent?	

Link	 Limit	 Int	 Extension	 Rate	 or	 amount	 or	 percent?	

BPA	 Limit	 Int	 Extension	 Rate	 or	 amount	 or	 percent?	

Path	 Limit	 Extension	 Endemic	 rou-ng?	

File	 Meta	 Data	 Proper-es	 Payload	 File	 directory	 info:	 name,	 permission,	 date,	

File	 Content	 File	 Payload	 File	 data	 	

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 25

1	

BPA	 App	 API	

Source	
Applica-on	

EBR	

BPA	

Bundles	

Intermediate	
(Re-‐)Encoder	

7/22/11 26 © 2010 Raytheon BBN Technologies

Large	
Bundle	

Source	
Encoder	

1
2
3

5
4

6

1.  Incoming app large-bundle addressed as:
 From: dtn://SourceHost/SourceApp
 To: dtn://DestHost/DestApp

2.  Source Encoder processes bundles
addressed to EIDs with “dtn” scheme.

3.  Source Encoder deletes original large-bundle
and injects Encoding Bundles addressed as:

 From: ebr://SourceHost/ebr
 To: ebr://DestHost/ebr

4.  Intermediate Encoder handles bundles
addressed to EIDs with “ebr” scheme.

5.  At source node, Intermediate Encoder simply
forwards Encoding Bundles as if it were an
Intermediate Node (see next slide).

6.  BPA forwards Encoding Bundles as instructed
in Step 5. From the BPA’s point of view, they
are simply ordinary bundles.

Processing Steps: Source Node

Encoding	
Bundles	

Des-na-on	
Decoder	

7/22/11 27 © 2010 Raytheon BBN Technologies

1.  Incoming bundle addressed as:
 From: ebr://SourceHost/ebr
 To: ebr://DestHost/ebr

2.  Intermediate Encoder processes Encoding
Bundles addressed to EIDs with “ebr”
scheme.

3.  Intermediate Encoder prepares Encodings to
forwarding to neighbors, one or more of the
following:

a)  Forward the Encoding Bundle
b)  Store it for re-encoding and/or filtering

redundant subsequent encodings
c)  Delete it if determined to be redundant
d)  Generate & send new Encoding Bundles
e)  Change Order of outgoing bundles
f)  Limit bundles per neighbor
g)  Collect statistics

4.  BPA forwards Encoding Bundles as instructed
in Step 3. From the BPA’s point of view, they
are simply ordinary bundles.

Processing Steps: Intermediate Node

1	

EBR	

BPA	

Intermediate	
(Re-‐)Encoder	

Source	
Encoder	

3
2 Encoding	

Bundles	

Des-na-on	
Decoder	

Bundle	

1

Bundles	

4

7/22/11 28 © 2010 Raytheon BBN Technologies

1.  Incoming bundle addressed as:
 From: ebr://SourceHost/ebr
 To: ebr://DestHost/ebr

2.  Intermediate Encoder processes Encoding Bundles
addressed to EIDs with “ebr” scheme.

3.  Intermediate Encoder may do one or more of the
following:

a)  Store the Encoding Bundle
b)  Delete it if redundant

4.  If received a full rank of encodings, Intermediate
Encoder signals the Destination Decoder to decode
the original source application large-bundle.

5.  Destination Decoder deletes the Encoding Bundles
and injects the decoded application bundle.

6.  Destination Decoder could send a “Stop” and/or
“Purge” control messages, (to be defined)

7.  The original source application large-bundle is
delivered to the destination application.

Processing Steps: Destination Node

1	

BPA	 App	 API	

Des-na-on	
Applica-on	

EBR	

BPA	

Bundle	

Intermediate	
(Re-‐)Encoder	

Large	
Bundle	

Source	
Encoder	

6

4

5

3
2

1

Encoding	
Bundles	

Des-na-on	
Decoder	

Application Bundle to Encoding Bundle

7/22/11 © 2010 Raytheon BBN Technologies 29

Primary	 Block	

Ext	 Block	 1	
(replicate=yes)	
Ext	 Block	 2	
(replicate=no)	
Ext	 Block	 3	
(replicate=yes)	

Payload	 Block	

App Bundle

Primary	 Block	

EC	 Ext	 Block	
(Vector	 1)	

Ext	 Block	 1	
(replicate=yes)	
Ext	 Block	 3	
(replicate=yes)	

Payload	 Block	
(Encoding	 1)	

Encoding
Bundle 1

Primary	 Block	

EC	 Ext	 Block	
(Vector	 2)	

Ext	 Block	 1	
(replicate=yes)	
Ext	 Block	 3	
(replicate=yes)	

Payload	 Block	
(Encoding	 2)	

Encoding
Bundle 2 . . .

Primary	 Block	

EC	 Ext	 Block	
(Vector	 n)	

Ext	 Block	 1	
(replicate=yes)	
Ext	 Block	 3	
(replicate=yes)	

Payload	 Block	
(Encoding	 n)	

Encoding
Bundle n

Bundle	 Auth	
Block	

(op-onal	 signature)	

Bundle	 Auth	
Block	

(op-onal	 signature)	

Bundle	 Auth	
Block	

(op-onal	 signature)	

Encode	

Transfer Spec

Note: Bundle Auth Block details are TBD

Application Bundle Transfer Spec

•  Refers to an Application Bundle’s metadata for properly
transporting the bundle
–  Destination Host
–  Lifetime
–  Some Processing Control Flags

•  Class of Service
•  Singleton Destination

•  Is conveyed in the Encoding Bundles’ primary block
–  (see next slide)

7/22/11 © 2010 Raytheon BBN Technologies 30

Encoding Bundles’ Primary Block
•  Source EID: ebr://<SourceHost>/ebr

–  <SourceHost> is the host generating the Encoding Bundle, which can be either
the Source Node or an Intermediate Node

•  Destination EID: ebr://<DestinationHost>/ebr
–  Source Node copies <DestinationHost> from the Destination SSP field in the

Application Bundle’s primary block
–  Intermediate Nodes generating new Encoding Bundles from existing Encoding

Bundles simply copy the Destination EID

•  Creation Timestamp: changed to the time the Encoding Bundle was
created, not to the Application Bundle creation time,.

•  Lifetime: changed to expire at same time as the original Application Bundle

•  Processing Control Flags: CoS & Singleton Destination bits
–  Source Node copies them from the Application Bundle’s primary block
–  Intermediate Nodes generating new Encoding Bundles copies them from

corresponding existing Encoding Bundles

•  Other fields are set by EBR as needed

7/22/11 © 2010 Raytheon BBN Technologies 31

Handling Application Bundle’s Extension Blocks
•  Extension blocks have a flag that dictate whether or not

they should be replicated in every bundle fragment

•  Encoding Bundles are not technically “bundle
fragments”, but are semantically similar
–  If “replicate” flag is set, then the extension block should be included in

every Encoding Bundle
–  All extension blocks, regardless of replicate flag, are encoded with the

rest of the original Application Bundle (see next slide for rationale)

•  When Destination Decoder decodes Application Bundle,
one copy of each replicated extension block is included
–  Destination Decoder may choose any of the copies, including the

original copy in the original Application Bundle
–  RFC 5050 provides no guidance about which fragment’s copy of the

extension block to use during reassembly

7/22/11 © 2010 Raytheon BBN Technologies 32

Rationale for Encoding Entire Original Bundle

•  To reconstitute the original Application Bundle, Encoding
Bundles need to convey the following:
–  Entire primary block
–  Entire extension blocks
–  Entire payload

•  Specifying a new format to convey this info would
essentially result in a new bundle format

•  Instead we use the existing RFC 5050 bundle format
–  i.e., we encode the entire “over-the-wire” representation of the

original Application Bundle

7/22/11 © 2010 Raytheon BBN Technologies 33

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 34

Erasure Coding Implementation:

•  File-transfer encoder and decoder as standalone DTN
applications using Erasure Coding Extension Blocks
(both C and Java implementation).

•  Large Bundle encoder and decoder integrated into
DTN 2.7 BPA (C implementation)
–  Extension Block replication and Signature Block not supported

•  Prototype Intermediate Re-encoder integrated into
DTN v2.7 BPA (C implementation)

•  All all prototypes used Random Binary Encoding over
the GF(2) field.

7/25/2011 © 2011 Raytheon BBN Technologies 35

Recommendations for Random Binary Coding

•  Use sparse hamming weight over dense hamming
weights encodings.
–  This reduces the time to encode
–  But has the same time solve, the same time to check if

redundant, and the roughly the same expected number of extra
encodings needed to get a full rank set.

•  Decoding time is dominated by XOR of encoding data
–  Use 64 bit XOR operation and not byte wise XOR operations.
–  Reduce the number operations, e.g. compare equation solvers

to matrix inversion.

7/25/2011 36 © 2011 Raytheon BBN Technologies

Test Setup

•  Encodings were generated at random with a max hamming weight.
–  Max Hamming weight is the independent variable for these experiments
–  chunk indexes were chosen at random with replacements, so actual Hamming weight might be

less than max hamming weight.

•  The encoding were inserted into an encoding set until a full rank set was
collected.

–  Number of encoding generated
–  Time to generate the encoding (dominated by cost to XOR chunks)
–  Time to check if a encoding raises the rank of current set (order N2 of the num chunks)

•  The encoding set was solved and the file chunks was reconstructed.
–  Time to solve the matrix inversion (order N3 of the num chunks)
–  Time to reconstruct chunk (dominated by cost to XOR encoding data)

•  All Test held these parameters constant:
–  File size 829KB
–  Number of Chunks 256
–  Chunk Length 3240 bytes
–  12 measurements for each hamming weight
–  The processor was a 2.5Ghz Windows laptop running Java 1.6

7/25/2011 37 © 2011 Raytheon BBN Technologies

Using Low Hamming Weight

•  Encodings are generated randomly until a full rank set was collected
•  For extremely sparse hamming weight substantially more encodings are needed to get a full rank

set
•  But even for fairly sparse weight (10 out of 256), the number converges to the theoretical

expected value (256 + 2) for dense vectors.
7/25/2011 38 © 2011 Raytheon BBN Technologies

a	 full	 rank	 set	 	 	 	 	 	 	 	 	

Encoding Generation time grows Linearly

•  To calculate the Encoding Data, a chunk is XORed for each
bit in the Encoding Vector, i.e. the hamming weight.

•  The time to generate an Encoding grows linearly with its
hamming weight.

7/25/2011 39 © 2011 Raytheon BBN Technologies

Matrix Inverse vs Incremental Solver

•  An alternative mechanism for deriving the chunks, is to use an incremental
solver.

•  For extremely sparse hamming weights, incremental was up to 5 times faster
than performing the inverse (in terms of the number of encoding data XORS).

•  But even for fairly sparse weights (15 out of 256), the solve time converges to be
the same.

7/25/2011 40 © 2011 Raytheon BBN Technologies

Summary

•  Encode Side:
–  Using sparse hamming weights reduces the cost to generate an

encoding. (linear relationship)
–  Unfortunately to get a full rank set of the number of random

encodings with extremely sparse weights (< 5 of 256) needs
many encodings (low error recovery)

•  Decode side:
–  For extremely sparse hamming weights (<5 out of 256), the the

use of an incremental solver shows dramatic improvements
–  but for sparse to heavy hamming weights there is no advantage

is no advantage over a matrix inversion.

7/25/2011 41 © 2011 Raytheon BBN Technologies

Outline

•  Erasure Coding Context
•  Erasure Coding Architecture
•  Encoding Process for Random Binary Code
•  Erasure Coding Headers
•  End-to-End File Transfer
•  End-to-End Bundle Transfer
•  Proof of Concept Implementation Results
•  Future Work

–  Additional End-to-End Transfer Types
–  Intermediate Encoders

7/25/2011 © 2011 Raytheon BBN Technologies 42

Inter-BPA Algorithms

•  End-to-End flow control and congestion control
–  Stop and Purge control bundles.

•  Intermediate Re-encoder
–  Epidemic and Endemic Flooding Protocols for Encodings
–  Contact-time re-encoding based on neighbor.

•  Intermediate Encoder
–  Handling Specification for encoding order, buffering, or custody.

•  Push vs Pull Content
–  Push: Disseminate to file to multiple destinations
–  Pull: Receive Encoding from multiple caches

•  E.g. Distributed Hash table, Bit torrent, or Software Updates

7/25/2011 © 2011 Raytheon BBN Technologies 43

Other Use Cases for EC Architecture
•  *File (All chunks are known a priori, all or no chunks needed within expire time)

–  Vector has complete range in which chunk bits can be set
–  Data is XOR of just the included chunks

•  Traditional Fragmentation (Fragment # is Chunk #)
–  Vector has only one chuck bit is set
–  Data in clear

•  FEC Block Parity Packet (packet # is Chunk #)
–  For Packet (like Fragmentation)

•  Vector has only one chunk bit is set
•  Data in clear

–  For block parity,
•  Vector has All chucks in block
•  Data is XOR of all chunks in block

•  Multicast NACK (Destination needs a specific chunk)
–  Vector has only one chuck bit set
–  Data in clear

•  Stream (Sliding window of chunks)
–  Vector has a range in which chunk bits can be set
–  Data is XOR of just the included chunks

•  Variable Importance data stream (Video)
–  (different chunks have different reliable or latency requirements)

7/25/2011 © 2011 Raytheon BBN Technologies 44

Support for other Coding Schemes

•  The Encoding Vector Format can accommodate other
encoding schemes than Random Binary Encoding.

•  Other Coding Schemes have different tradeoffs:
–  Encoding vs Decoding Resources
–  Percentage of decoded of chunks, before all chucks can be

decoded
–  Expected number encodings before chunks can be decoded.
–  Exploitation of the type of data being transferred (e.g. video,

voice, pictures)
–  Exploitation of multicast links

7/25/2011 © 2011 Raytheon BBN Technologies 45

Security Issues

•  Inserting an Encoding where the Encoding Vector does
not match Encoding Data (i.e. random data) will
scramble part of the file.
–  Encodings bundles should be signed

•  What operations can the Intermediate Nodes be trusted?
•  Does the source have to be authenticated?

7/25/2011 © 2011 Raytheon BBN Technologies 46

