The Minimum Rank Objective Function with Hysteresis

draft-ietf-roll-minrank-hysteresis-of-01

Omprakash Gnawali and Philip Levis

IETF 80 Prague, Czech Republic

The Minimum Rank Objective Function with Hysteresis (MRHOF)

- Applicable metrics
 - Listed in I-D.ietf-roll-routing-metrics
 - Additive
 - Global
 - Metric minimization as routing objective

- Based on experiences with ETX
 - Might be applicable to latency and other metrics

Metric Minimization

- Compute the Path metric and parent
 - At the root
 - cur_min_path_metric = MIN_PATH_METRIC
 - On other nodes
 - candidate_min_path_metric(i) =
 Link metric to a candidate i + Path metric from i to the DAG root
 - cur_min_path_metric = Min{candidate_min_path_metric(1..n)}
 - Parent = candidate whose cost is equal to cur_min_path_metric
- Examples
 - ETX: Paths with the smallest expected transmit count
 - Latency: Least latency paths

Hysteresis

- Link metric can have jitter
 - Example: ETX jitter due to changing link quality
 - Can cause churn in the topology
- Hysteresis delays the effects
 - Short-term and small changes in link properties should not trigger path recomputation
- Change parent if the new path metric is better by at least PARENT_SWITCH_THRESHOLD

Computing Rank from Cost

Metric	Rank
Node Energy	255 – Cost
Hop Count	Cost
Latency	Cost/65536
Link Quality Level	Cost
ETX	Cost

- Node state and attributes
- Throughput
- Link color

Discussions

- Follows DIO processing rules in RPL
- Parent set size
 - "Stretch" of rank from preferred parent rank?
 - Configuration parameter?

Parent set size concern

- For a neighbor to be in the parent set, the node must maintain its Rank
 - Additional 2 bytes per parent per DAG
 - State/efficiency tradeoff
- Increasing Rank (and available parent set) can require obtaining Rank values

DIS?

– Link-local multicast DIS?

Implementation of RPL

Gnawali

IETF 80

Prague, Czech Republic

Goal

- timers, optional mechanisms, buffer sizes, ...
- Guidelines for efficient implementation
 - Collect the experiences from experiments and deployments

performance

- Minimum Interval
 - Will Asune encorraged

- Tyle largement in the theat
- Ekpedniegerethwible thearx interval of several hours
- Experiences with max interval of several hours
 - Redundancy Constant

Route Poisoning

- Does not prevent loops
- Does not prevent loops

Lossy

links

- Tradeoff: complexity for incremental expedience in topology repair
 - It is possible to detect and repair loops in tens of

Flushing Neighbor Information

- Should avoid flushing neighbor information as much as possible
- Can take a lot of time (and energy) to rebuild

- Do not flush the table if the route is lost
 - Link qualities to the neighbors might still be valid

Data-path Slowdown During Repair

packet transmission during repair

- Yields the channel to control traffic
- Greatly improves inconsistency repair

 Can lead to higher latency and buffer overflow at the edges

Path Cost Minimization vs Stability

- Minimize/stabilize path cost (Rank) instead of maximizing path stability
 - But very rapid path changes to minimize cost can also be harmful (MRHOF) -- tradeoff