IPv6 Site Renumbering Guidelines and Further Works

draft-jiang-ipv6-site-renum-guideline

IETF 80 RENUM BoF

March 31, 2010

Sheng Jiang(Speaker)
Bing Liu

Introduction

- Renumbering is not new. We stand on the shoulders of giants
- RFC5887 "Renumbering Still Needs Work", by B. Carpenter
 - RFC1900 "Renumbering Needs Work", by B. Carpenter
 - RFC4192, RFC4076, RFC2894, RFC2874, RFC2072, RFC2071, RFC1916
 - Credits to B. Carpenter, F. Baker, T. Chown, M. Crawford, R. Droms, etc.
- Analyzes the existing issues for IPv6 site renumbering
- Analyzes the possible directions to solve these issues and gives recommendations
 - Many issues can be avoided if networks are well-designed and well-managed
 - Some issues need to extra functions beyond the current protocols
 - Some issues may not solvable
- Only takes the perspective of network and network protocols
- IPv6 only. Renumbering in IPv4 networks, in the dual-stack network or in the IPv4/IPv6 transition networks are out of scope

Analysis structure

- Issues are described in three categories with recommended solutions or strategies:
 - considerations during network design
 - considerations for routine network management
 - considerations during renumbering operation
- Issues that still remain unsolvable are listed as the fourth category
- A few non-network issues is also listed
 - these issues are considered to be unsolvable from ISP perspective,
 - they may be solved by OS or application implementations
- Summary the requests that need to extend current protocols as further works

Considerations/issues during network design (1)

Address configuration models

- It is recommended that a network should choose only one hostoriented address configuration model, either SLAAC by ND or stateful address configuration by DHCPv6
- ND and DHCPv6 co-existing is possible with many potential issues
 - draft-liu-ipv6-renum-conflicts proposes a diagnose and report mechanism

DNS

 It is recommended that the site have an automatic and systematic procedure for updating/synchronising its DNS records, including both forward and reverse mapping

Considerations/issues during network design (2)

Security

- Any automatic renumbering scheme has a potential exposure to hijacking at the moment that a new address is announced
- Proper network security mechanisms should be employed
 - SEND [RFC3971] is recommended
 - Alternatively, certain lightweight renumbering specific security mechanism may be developed

Miscellaneous

- Addresses should not be used to configure network connectivity
 - Such as tunnel, addresses from other sites or networks, etc.
 - Fully-Qualified Domain Names should be used
 - Service Location Protocol and multicast DNS with SRV records for service discovery

Considerations/issues for the routine network management

Stable records or long lifetimes mean less flexibility

- Reduce the address preferred time or valid time or both
- Reduce the DNS record TTL
- Reduce the DNS configuration lifetime on the hosts
- Reduce the NAT mapping session keepalive time
- These recommendations are increase the daily burden of networks
- Therefore, only these networks that are expected to be renumbered soon or very frequent should adopt these recommendations with the balance consideration between daily cost and renumbering cost

Considerations/issues during renumbering operation (2)

Transition period

 If renumbering transition period is longer than all addresses lifetime, ND or DHCPv6 can automatically accomplishes client renumbering

Network initiative enforced renumbering

If the network has to enforce renumbering before addresses lease expire, the network should initiate enforcement messages

DNS record update and DNS configuration on hosts

- DNS records should be updated if hosts are renumbered. If the TTL of DNS records
 is shorter than the transition period, administrative operation may not be necessary
- DNS configuration on hosts should be updated if local recursive DNS servers are renumbered. A notification mechanism may be needed to indicate the hosts that a renumbering event of local recursive DNS happens or is going to take place

Considerations/issues during renumbering operation (2)

Router awareness

In a site with multiple border routers, portion renumbering should be aware by all border routers in order to correctly handle inbound packets. Internal forwarding tables need to be updated.

Border filtering

 In a multihomed site, the egress router connecting to ISP A should be notified if the egress router connecting to ISP B initiates a renumbering event in order to properly act filter function

NAT or tunnel concentrator renumbering

 NAT or tunnel concentrator itself might be renumbered. This change should be reconfigured to relevant hosts or router

Issues that still remain unsolvable (1)

- It is not possible to reduce a prefix's lifetime to below two hours. So, renumbering should not be an unplanned sudden event. This issue could only be avoided by early planning.
- Manual or script-driven procedures will break the completely automatic host renumbering
- Some environments like embedded systems might not use DHCP or SLAAC and even configuration scripts might not be an option. This creates special problems that no general-purpose solution is likely to address
- TCP and UDP flows can't survive at renumbering event at either end
- Some address configuration data might be widely dispersed and much harder to find, even will inevitably be found only after the renumbering event

Issues that still remain unsolvable (2)

- The embedding of IPv6 unicast addresses into multicast addresses and the embedded-RP (Rendezvous Point) will cause issues when renumbering
- Changing the unicast source address of a multicast sender might also be an issue for receivers
- When a renumbering event takes place, entries in the state table of NAT or tunnel concentrator that happen to contain the affected addresses will become invalid and will eventually time out
- A site that is listed in a black list can escape that list by renumbering itself

Some of these issues can be considered as harmless or have minimum impacts.

Issues that need further analysis

- "Some routers cache IP addresses in some situations. So routers might need to be restarted as a result of site renumbering" [RFC2072]
 - It seems this caused by individual implementation and only happen on the old type of routers.
 - Author note: to be removed, if confirmed
- Multihomed site, using SLAAC for one address prefix and DHCPv6 for another, would clearly create a risk of inconsistent host behaviour and operational confusion
- It seems so far the renumbering studies only focusing on the individual network using a single prefix
 - In a large network, a short prefix may be used. The prefix is split into several longer prefixes and delegated to several sub-networks. How to coordinate among these sub-networks to be renumbered together may be worth of analyzing. (To make the scenario even more complicated, it may be some sub-networks employ SLAAS while some others are managed by DHCPv6.)
- The impact of portion renumbering may need to be analyzed further.

Non-network issues

- "Some routers cache IP addresses in some situations. So routers might need to be restarted as a result of site renumbering" [RFC2072]. It seems this caused by individual implementation and only happen on the old type of routers. (Author note: to be removed, if confirmed)
- Multihomed site, using SLAAC for one address prefix and DHCPv6 for another, would clearly create a risk of inconsistent host behaviour and operational confusion.
- It seems so far the renumbering studies only focusing on the individual network using a single prefix. In a large network, a short prefix may be used. The prefix is assigned to be longer and prefixes and delegated to several sub-networks. To make the scenario even more complicated, it may be some sub-networks employ SLAAS while some others are managed by DHCPv6. How to coordinate among these sub-networks to be renumbered together may be worth of analyzing.
- The impact of portion renumbering may need to be analyzed further.

Identified requests to extend protocols

- A diagnose function to detect and report the confliction of SLAAC and DHCPv6 address assignment
- The current protocol needs to be extended if it does not support to combine the forward and reverse DNS updates in a single procedure (Author note: it seems possible. If so, remove this item.)
- DHCPv6 should be extended to indicate hosts the associated DNS lifetimes when making DNS configuration
- A lightweight renumbering specific security mechanism may be developed if SEND is too weight to be widely deployed
- If the issues of coordination among these sub-networks to be renumbered together are confirmed, new interaction may need to be defined to achieve the cooperation
- A notification mechanism may be needed to indicate the hosts that a renumbering event of local recursive DNS happen or is going to take place recursive
- NAT or tunnel concentrator configuration procedure may need to be extended to be able to notify the host the renumbering of NAT or tunnel concentrator

• Questions, clarifications?

Thanks