
!"

!"#$%&'(%)"'*+&%,"'

-.##"/'0"//1/2)'
3.45671)7$87$9'

#$%&"'(")"*+,-."/(!!"

draft-ietf-p2psip-base-13

DRR

• Specified in a separate draft

– Need minimal support in base draft for forward compatibility

• Proposal

– Exception in § 4.1.2 to allow extensions to adjust state keeping

rules:

Whatever algorithm is used, unless a FORWARD CRITICAL

forwarding option or overlay configuration option explicitly

indicates this state is not needed, the state MUST be

maintained for at least the value of the overlay reliability timer

(3 seconds) and MAY be kept longer. Future extension, such

as [I-D.jiang-p2psip-relay], may define mechanisms for

determining when this state does not need to be retained.

– IGNORE-STATE-KEEPING forwarding extension in

draft-jiang-p2psip-relay-05 to use via list

– Agreement from Jennings, Lowekamp, Even, Rescorla

IETF 80 P2PSIP 2

Configuration Refresh

• Previously, just expiration time

• Now: retrieve configuration at a randomly selected time in the

future

IETF 80 P2PSIP 3

Configuration Defaults

• Many settings in which there were no defaults now have them

– Topology plugin (CHORD_RELOAD)

– Port (6084)

– Clients-permitted (chord-reactive = true)

– ...

IETF 80 P2PSIP 4

Resolving Simultaneous Connects

• What happens if two nodes try to simultaneously connect to each

other

– End up with two connections

• Tie-breaker algorithm [Chen]

– Comparison of Node-Id A, B as unsigned integers

– Keep A → B connection iff A > B

– Larger node-id sends a Error_In_Progress error (new)

IETF 80 P2PSIP 5

Replica/Topology Shift Stores and Lifetime

• At time t0 data is stored at A with lifetime T

• At time t1, A stores to B and needs to send lifetime T �

– Draft didn’t define the adjustment algorithm

• § 6.4.1.1 now has an explicit algorithm:

– T � = T − (t1 − t0)

IETF 80 P2PSIP 6

Triggered ConfigUpdates

• A tries to store item of kind k to B but B doesn’t know about k

– B sends back Error_Unknown_Kind

• This is a signal that B’s config is likely out of date

• New requirement (§ 6.4.1.2) for A to generate a ConfigUpdate

IETF 80 P2PSIP 7

Resource-ID Computation Algorithm

• Used to be in the configuration document but now it’s defined by

the overlay algorithm

– Proposal: SHA-1 for Chord

• Bug in the current document: § 9.2 specifies truncation to 128

but node-ids vary between 128 and 160 bits (§ 5.3.1.1)

– This is obviously bad

– Proposal: SHA-1 truncated to node-id length

IETF 80 P2PSIP 8

Clarify Congestion Control Considerations

• Wasn’t totally clear what the requirements were for flow control

algorithms. Reworded in § 5.6.3.1

“Because the receiver’s role is limited to providing packet

acknowledgements, a wide variety of congestion control algorithms

can be implemented on the sender side while using the same basic

wire protocol. In general, senders MAY implement any rate control

scheme of their choice, provided that it is REQUIRED to be no

more aggressive then TFRC[RFC5348].

The following section describes a simple, inefficient, scheme that

complys with this requirement. Another alternative would be

TFRC-SP [RFC4828] and use the received bitmask to allow the

sender to compute packet loss event rates.”

IETF 80 P2PSIP 9

Extensive Uncontroversial Technical and Editorial

Changes

Special thanks to Marc Petit-Huegenin for an amazingly thorough

reviews.

IETF 80 P2PSIP 10

Open Issue: How to get a certificate with multiple

Node-Ids?

• Nothing in the draft here.

• Consensus seems to be POST argument

• Concrete Proposal: nodeids=X query parameter

IETF 80 P2PSIP 11

Open Issue: Signing With Multiple Node-Ids

• Signatures are currently tied to certificates (SignerIdentity)

– But what about certificates with multiple Node-Ids?

• Proposal: hash the Node-Id into the hash of the certificate

struct {

select (identity_type) {

case cert_hash:

HashAlgorithm hash_alg; // From TLS

opaque certificate_hash<0..2^8-1>;

case cert_hash_node_id:

HashAlgorithm hash_alg; // From TLS

opaque certificate_node_id_hash<0..2^8-1>;

/* This structure may be extended with new types if necessary*/

};

} SignerIdentityValue;

certificate_node_id_hash = H(NodeId || certificate)

• Cost = n ∗m

IETF 80 P2PSIP 12

Identifying Connection Endpoints with muliple

Node-Ids

• How do you know who is at the other end of the connection?

• Proposal from Bruce Lowekamp: use Attach for all but bootstrap

– This includes client connections

– This allows determination of Node-Id

– Current status of § 11.

• Marc Petit-Huegenin argues that this doesn’t work for bootstrap

– Suggests using a Ping (possibly optional) instead.

• Discuss?

IETF 80 P2PSIP 13

Open Issue: Who Signs Stores?

• § 6.4.1.1 (StoreReq processing) requires verifying the stored value

signatures

• § 6.3.x (access control policies) is phrased in terms of the signed

request

• Both signatures matter, but this is wrong

• Proposal:

– Check stored value signatures against access control policies (§
6.3.1)

– Check the request signature against either access control

policies (original store) or plausible responsible node (replica

store)

IETF 80 P2PSIP 14

Open Issue: Refreshing Finger Table

• Formula is still wrong

• Proposal: Dr. Fluffy to fix

IETF 80 P2PSIP 15

Way Forward

• Resolve these issues

• Issue a new draft by 4/30

• ???

• Profit

IETF 80 P2PSIP 16

