
A Usage for Shared Resources in
RELOAD (ShaRe)

draft-knauf-p2psip-share-00

Alexander Knauf
Gabriel Hege

Thomas Schmidt
Matthias Wählisch

alexander.knauf@haw-hamburg.de, hege@fhtw-berlin.de, {t.schmidt,waehlisch}@ieee.org

03/31/2011 draft-knauf-p2psip-share-00 2/13

Outline

1.Problem Statement and Objectives

2.Overview Shared Resources

3.Access Control

4.Variable Resource Names

5.Conclusion & Outlook

03/31/2011 draft-knauf-p2psip-share-00 3/13

Problem Statement

Why do we need Shared Resources in RELOAD?
● Standard access control mechanisms are not sufficient for

controlled write access by multiple peers

● Simplest way: USER-MATCH policy and certificate with same
user name for all peers
– Need to contact enrollment server → infeasible

– Need to distribute private key/secrets/certificate

– No individual revocation

● Use cases:
– conference registration, message board, SSM source

announcement, ...

03/31/2011 draft-knauf-p2psip-share-00 4/13

Objectives

● Single resource to be writable by a well defined
group of peers
● Without contacting enrollment server
● Allow revocation

● Optionally: more relaxed resource naming scheme

● Define some primitives for other Usages to build
upon

03/31/2011 draft-knauf-p2psip-share-00 5/13

Shared Resources - Overview

● RELOAD Resource (Kind) for which multiple peers have write
access

● Resource Owner: has access by some (standard) policy
(e.g., USER-MATCH)

● Resource Owner grants access using an Access Control List
(ACL)

● ACL is stored under the same Resource-ID

→ on the same peer

● Write permission may be further delegated

→ Chain of delegations in ACL

03/31/2011 draft-knauf-p2psip-share-00 6/13

Access Control Policies

● For the Owner:
● Standard policy (e.g., USER-MATCH)

– or relaxation thereof: USER-PATTERN-MATCH

● Allows the Owner to store the ACL

● For other peers:
● USER-CHAIN-ACL

● Enforced by the storing peer, but independently
verifiable

03/31/2011 draft-knauf-p2psip-share-00 7/13

Access Control List

● Stored under the same Resource Name as the
Shared Resource

● Contains delegations from_user → to_user

● Users in the ACL may write the Shared Resource

● Chain of signed delegations may be independently
verified struct {

 opaque resource_name<0..2^16-1>;
 KindId kind;
 opaque from_user<0..2^16-1>;
 opaque to_user<0..2^16-1>;
 Boolean allow_delegation;
} AccessListData;

03/31/2011 draft-knauf-p2psip-share-00 8/13

Revocation of Write Permission

Revocation is simple:

● Invalidate corresponding delegation in ACL
● set exists=false

● Succeeding delegations also invalidated

● Owner can revoke the whole list by deleting the
root entry

03/31/2011 draft-knauf-p2psip-share-00 9/13

Access Control List – Example

+---+
| Access List |
+---+---------------------------------------+-----------------+
| # | Array Entries | Signature |
+---+---------------------------------------+-----------------+
| 0 | Kind:1234 from:Owner -> to:Owner ad:1 | signed by Owner |
+---+---------------------------------------+-----------------+
| 1 | Kind:1234 from:Owner -> to:Alice ad:1 | signed by Owner |
+---+---------------------------------------+-----------------+
| 2 | Kind:1234 from:Alice -> to:Bob ad:0 | signed by Alice |
+---+---------------------------------------+-----------------+
|...| ... | ... |
+---+---------------------------------------+-----------------+
| 42| Kind:4321 from:Owner -> to:Owner ad:1 | signed by Owner |
+---+---------------------------------------+-----------------+
| 43| Kind:4321 from:Owner -> to:Carol ad:0 | signed by Owner |
+---+---------------------------------------+-----------------+
|...| ... | ... |
+---+---------------------------------------+-----------------+

03/31/2011 draft-knauf-p2psip-share-00 10/13

Requirements for
Using Shared Resources

● Separated Data Storage
● Each element MUST be exclusively maintained by its

creator

→ Kind MUST use a RELOAD data model consisting of
individual objects (e.g. array or dictionary)

● Access Control Policy
● Usage MUST permit the USER-CHAIN-ACL policy

● user_name field
● Kind data structure MUST contain the user_name field

03/31/2011 draft-knauf-p2psip-share-00 11/13

Variable Resource Names

● Extends the set of allowed Resource Names for a peer with
a given user name

→ Relaxation of USER-MATCH policy

● Resource Names still closely related to Owner's user name

● Regular expression defines the allowed Resource Names
for a Kind in the configuration document:

<variable-resource-names>
 <pattern kind="DISCO-REGISTRATION">
 .*-conf-$USER@$DOMAIN
 </pattern>
</variable-resource-names>

03/31/2011 draft-knauf-p2psip-share-00 12/13

● Defined primitives to allow coordinated shared writing of a
RELOAD resource

● Defined a relaxed resource naming scheme

● Now we need some drafts using these primitives ;-)
(see draft-knauf-p2psip-disco-02)

● Use CGIs as an additional option for resource names

● Next version could use ECMAScript to define access policies
as in draft-petithuguenin-p2psip-access-control

Conclusion & Outlook

03/31/2011 draft-knauf-p2psip-share-00 13/13

Thank you for your attention!

Any Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

