
OSPF WG
Security Extensions for OSPFv2 when

using Manual Keying

Manav Bhatia, Alcatel-Lucent
Sam Hartman, Huawei

Dacheng Zhang, Huawei
IETF 80, Prague

Current State of Security
l  OPSEC has published RFC 6039 that does

an analysis on the vulnerabilities that exist in
OSPFv2 despite it using the security and
authentication mechanisms described in RFC
2328 and 5709

l  draft-ietf-karp-ospf-analysis identifies certain
gaps that remain between the current
security state and those identified in draft-ietf-
karp-threats-reqs

Gaps Identified
l  Replay Protection

l  OSPFv2 uses Cryptographic Sequence numbers
to prevent intra-session replay attacks

l  Does not help in protecting against inter-session
replay attacks

l  IP Header Unprotected

l  OSPFv2 uses the source IP to identify the
neighbor in some cases

l  IPv4 Header is not protected by the authentication
digest

So what does this draft do?
l  It fixes the issues identified during the

OSPFv2 gap analysis
l  Proposes two mechanisms to prevent inter-

session replay attacks
l  Extends the Authentication Sequence Number

space
l  Introduces the concept of Session ID and Nonce

l  Fixes the IP header issue by factoring in the
source IP address when computing the
crypto digest - thus attacks which change
this, will not be successful now

OSPF Hdr: Sequence Num = 10001
OSPF HELLO: Neighbor = B

OSPF Hdr: Sequence Num = 50001
OSPF HELLO: Neighbor = A

Router B

goes down!

OSPF Hdr: Sequence Num = 1
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 10011
OSPF HELLO: Neighbor = B

OSPF Hdr: Sequence Num = 10012
OSPF HELLO: Neighbor = 0

Router B Router A

OSPF Hdr: Sequence Num = 10010
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 2
OSPF HELLO: Neighbor = A

OSPF Hdr: Sequence Num = 50000
OSPF HELLO: Neighbor = 0

Router A accepts
the packet and
brings down the
adjacency with B!

Inter-Session Replay Attack

OSPF Hdr: Sequence Num = 50000
OSPF HELLO: Neighbor = 0

So how do we fix this? (1/2)
l  OSPF authentication mechanism is stateless

and oblivious to the session information
l  Router A for example doesn’t remember that it

once had an OSPF session with B and the last
cryptographic sequence number seen from B was
50001

l  Highly un-scalable and also requires B to keeping
updating the non-volatile memory each time it
increments a sequence number so that it can
continue from there.

So how do we fix this? (2/2)
l  Change the crypto sequence number

generation algorithm at the sender side so
that it always generates an increasing
number (for both planned and unplanned
restarts)

l  Implement some algorithm that guarantees
freshness of packets

l  We describe both in the draft

Changing the crypto
sequence number algorithm
l  Currently the sequence number is a 32-bit

monotonically increasing entity
l  Expand this to 64 bits where:

l  most significant 32-bits increment each time the
router cold boots.

l  last 32-bits remain unchanged
l  The final sequence number is a

concatenation of the above two numbers

OSPF Hdr: Sequence Num = 0:10001
OSPF HELLO: Neighbor = B

OSPF Hdr: Sequence Num = 10:50001
OSPF HELLO: Neighbor = A

Router B

goes down!

OSPF Hdr: Sequence Num = 11:1
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 0:10011
OSPF HELLO: Neighbor = B

Router B Router A

OSPF Hdr: Sequence Num = 0:10010
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 11:2
OSPF HELLO: Neighbor = A

OSPF Hdr: Sequence Num = 10:50000
OSPF HELLO: Neighbor = 0

Router A rejects
this as sequence
number < 11:2

 So does this help?

OSPF Hdr: Sequence Num = 10:50000
OSPF HELLO: Neighbor = 0

So where are we?
l  We believe it solves the inter-session replay

attacks with OSPF
l  This solution does NOT guarantee packet

freshness, i.e., you still don’t know if you are
speaking to a live router or if somebody is
playing out the entire conversation

l  If you want to fix this then the draft spells out
the challenge/response mechanism using the
Session IDs and Nonces

Benefits
l  Easy to implement - very minimal changes to

the OSPF running code
l  Consider this as part of the KARP

infrastructure that even other routing
protocols can use

l  Minimal changes required in the OSPF
packet encoding

Next Steps
l  We need people who understand OSPF to

look at this mechanism and see if they find
some holes in it.

l  If they think this is fool-proof then we can
remove the Session ID and the Nonce stuff
that currently exists in the draft

l  Accept this as a WG document since there
has been a lot of discussion on the mailing
list and people have taken it positively there!

Feedback!

A B
Source IP - X'

OSPFv2 Data

Authentication
Data

1. OSPF Packet
replayed and

source IP
changed from X

to X'

Authentication
has been
computed
assuming

source IP as X

2. B computes the
digest assuming
the source IP as

X'

3. B rejects the
packet as the

computed digest
does NOT match
the digest carried

in the packet!

Protecting the source IP
address

