
OSPF WG
Security Extensions for OSPFv2 when

using Manual Keying

Manav Bhatia, Alcatel-Lucent
Sam Hartman, Painless security

Dacheng Zhang, Huawei
IETF 80, Prague

Current State of Security
  OPSEC has published RFC 6039 that does

an analysis on the vulnerabilities that exist in
OSPFv2 despite it using the security and
authentication mechanisms described in RFC
2328 and 5709

  draft-ietf-karp-ospf-analysis identifies certain
gaps that remain between the current
security state and those identified in draft-ietf-
karp-threats-reqs

Gaps Identified
  Replay Protection

  OSPFv2 uses Cryptographic Sequence numbers
to prevent intra-session replay attacks

  Does not help in protecting against inter-session
replay attacks

  IP Header Unprotected
  OSPFv2 uses the source IP to identify the

neighbor in some cases
  IPv4 Header is not protected by the authentication

digest

So what does this draft do?
  It fixes the issues identified during the

OSPFv2 gap analysis
  Proposes two mechanisms to prevent inter-

session replay attacks
  Extends the Authentication Sequence Number

space
  Introduces the concept of Session ID and Nonce

  Fixes the IP header issue by factoring in the
source IP address when computing the
crypto digest - thus attacks which change
this, will not be successful now

OSPF Hdr: Sequence Num = 10001
OSPF HELLO: Neighbor = B;

OSPF Hdr: Sequence Num = 50001
OSPF HELLO: Neighbor = A;

Router B

goes down!

OSPF Hdr: Sequence Num = 1
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 10011
OSPF HELLO: Neighbor = B

OSPF Hdr: Sequence Num = 10012
OSPF HELLO: Neighbor = 0

Router B Router A

OSPF Hdr: Sequence Num = 10010
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 2
OSPF HELLO: Neighbor = A

OSPF Hdr: Sequence Num = 50000
OSPF HELLO: Neighbor = 0

Router A accepts
the packet and
brings down the
adjacency with B!

Inter-Session Replay Attack

So how do we fix this? (1/2)
  OSPF authentication mechanism is stateless

and oblivious to the session information
  Router A for example doesn’t remember that it

once had an OSPF session with B and the last
cryptographic sequence number seen from B was
50001

  Highly un-scalable and also requires B to keeping
updating the non-volatile memory each time it
increments a sequence number so that it can
continue from there.

So how do we fix this? (2/2)
  Change the crypto sequence number

generation algorithm at the sender side so
that it always generates an increasing
number (for both planned and unplanned
restarts)

  Implement some algorithm that guarantees
freshness of packets

  We describe both in the draft

Changing the crypto
sequence number algorithm
  Currently the sequence number is a 32-bit

monotonically increasing entity
  Expand this to 64 bits where:

  most significant 32-bits increment each time the
router cold boots.

  last 32-bits remain unchanged
  The final sequence number is a

concatenation of the above two numbers

OSPF Hdr: Sequence Num = 0:10001
OSPF HELLO: Neighbor = B;

OSPF Hdr: Sequence Num = 10:50001
OSPF HELLO: Neighbor = A;

Router B

goes down!

OSPF Hdr: Sequence Num = 11:1
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 0:10011
OSPF HELLO: Neighbor = B

Router B Router A

OSPF Hdr: Sequence Num = 0:10010
OSPF HELLO: Neighbor = 0

OSPF Hdr: Sequence Num = 11:2
OSPF HELLO: Neighbor = A

OSPF Hdr: Sequence Num = 0:50000
OSPF HELLO: Neighbor = 0

Router A rejects
this as sequence
number < 11:2

 So does this help?

So where are we?
  We believe it solves the inter-session replay

attacks with OSPF
  This solution does NOT guarantee packet

freshness, i.e., you still don’t know if you are
speaking to a live router or if somebody is
playing out the entire conversation

  If you want to fix this then the draft spells out
the challenge/response mechanism using the
Session IDs and Nonces

Benefits
  Easy to implement - very minimal changes to

the OSPF running code
  Consider this as part of the KARP

infrastructure that even other routing
protocols can use

  Minimal changes required in the OSPF
packet encoding

Router A Router B

OSPF Hdr: Session ID = X1; Nonce = N1
OSPF HELLO: Neighbor = 0

OSPF Hdr: Session ID = X2; Nonce = N2
OSPF HELLO: Neighbor = 0

OSPF Hdr: Session ID = X1; Nonce = N1
OSPF HELLO: Neighbor = B;
Session ID = X2; Nonce = N2

OSPF Hdr: Session ID = X2; Nonce = N2
OSPF HELLO: Neighbor = A;
Session ID = X1; Nonce = N1

Router B reaches the 2way state
and can now initiate the DD

exchange.All Hellos from B will now
contain A's Session ID and the nonce

value

OSPF Hdr: Session ID = X1; Nonce = N1
Normal OSPF DD packet

OSPF Hdr: Session ID = X2; Nonce = N2
Normal OSPF DD packet

The OSPF header carries the Session
ID and the Nonce value. There is no
change in the DD packet. Router A
will accept any packet from B as
long as the header carries the
same Session ID and the nonce
value that it sees in its HELLOs

OSPF Hdr: Session ID = X1; Nonce = N1
Normal OSPF Link State Packet

Scenario 1: Two Routers coming up ..

OSPF Hdr: Session ID = X1; Nonce = N1
OSPF HELLO: Neighbor = B;
Session ID = X2; Nonce = N2

Router A keeps sending its HELLO
listing B as its neigbor along with
the last Session ID and the nonce

value

C/R Solution (1)

Router A Router C

OSPF Hdr: Session ID = X3; Nonce = N3
OSPF HELLO: Neighbor = 0

OSPF Hdr: Session ID = X1; Nonce = N1'
OSPF HELLO: Neighbor1 = B;
Session ID = X2; Nonce = N2

OSPF Hdr: Session ID = X2; Nonce = N2
OSPF HELLO: Neighbor = A;
Session ID = X1; Nonce = N1'

Router A's HELLO is listing B as a
neighbor

OSPF Hdr: Session ID = X1; Nonce = N1'
Normal OSPF DD packet

OSPF Hdr: Session ID = X2; Nonce = N2
Normal OSPF DD packet

The OSPF header carries the Session
ID and the Nonce value. There is no
change in the DD packet. Router A
will accept any packet from C as
long as the header carries the
same Session ID and the nonce
value that it sees in its HELLOs

OSPF Hdr: Session ID = X1; Nonce = N1
Normal OSPF Link State Packet

Scenario 2: Another Router C comes up on that LAN

OSPF Hdr: Session ID = X1; Nonce = N1
OSPF HELLO: Neighbor = B;
Session ID = X2; Nonce = N2

Router C's blank HELLO with its
Session ID and nonce value

Neighbor2 = C;
Session ID = X3; Nonce = N3

Upon hearing a new router, A uses a new
Nonce N1'. Router B, updates its data

structures to use the new value. It
knows its correct since the HELLOs are
listing Router B's correct Session ID and

nonce values

C/R Solution (2)

Router A Router B

OSPF Hdr: Session ID = X4; Nonce = N4
OSPF HELLO: Neighbor = 0

OSPF Hdr: Session ID = X4; Nonce = N4
OSPF HELLO: Neighbor = B;
Session ID = X2; Nonce = N2'

OSPF Hdr: Session ID = X2; Nonce = N2'
OSPF HELLO: Neighbor = A;
Session ID = X4; Nonce = N4

Router B recvs new HELLO -- makes
note of it and changes its nonce

value. Continues listing A with the
earlier session ID and nonce values

OSPF Hdr: Session ID = X4; Nonce = N4
Normal OSPF DD packet

OSPF Hdr: Session ID = X2; Nonce = N2'
Normal OSPF DD packet

Scenario 3: Router A reboots

Router A reboots and uses a new
Session ID and nonce values OSPF HELLO: Neighbor = A;

Session ID = X1; Nonce = N1

OSPF Hdr: Session ID = X2; Nonce = N2'

Router B sees the new HELLO with
its new nonce value, updates its
internal state of A with its new

Session ID X4 and nonce value N4. It
carries these new values in its

subsequent packets.

C/R Solution (3)

Next Steps
  We need people who understand OSPF to

look at this mechanism and see if they find
some holes in it.

  If they think this is fool-proof then we can
remove the Session ID and the Nonce stuff
that currently exists in the draft

  Accept this as a WG document since there
has been a lot of discussion on the mailing
list and people have taken it positively there!

Feedback!

A B
Source IP - X'

OSPFv2 Data

Authentication
Data

1. OSPF Packet
replayed and

source IP
changed from X

to X'

Authentication
has been
computed
assuming

source IP as X

2. B computes the
digest assuming
the source IP as

X'

3. B rejects the
packet as the

computed digest
does NOT match
the digest carried

in the packet!

Protecting the source IP
address

