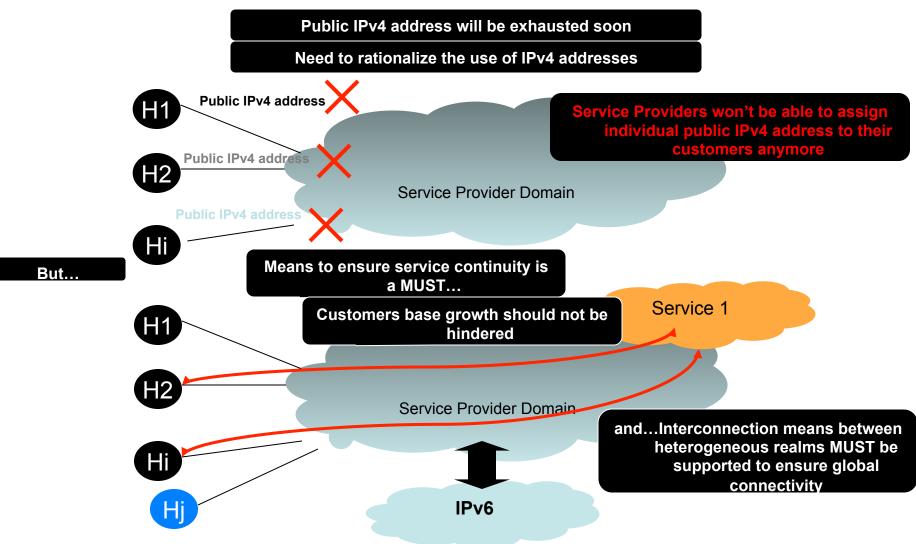
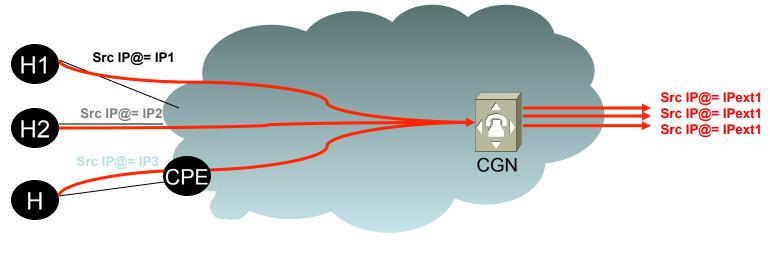
Analysis of Solution Candidates to Reveal the Origin IP Address in Shared Address Deployments

draft-boucadair-intarea-nat-reveal-analysis-01

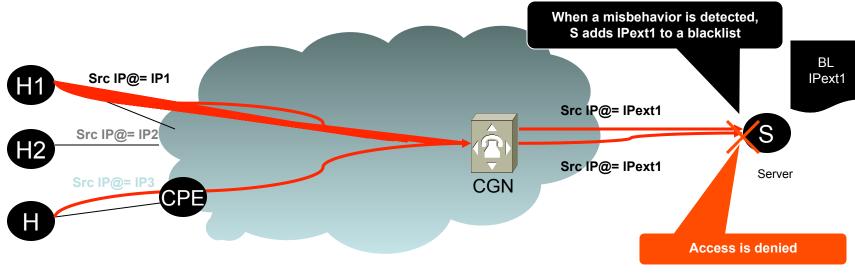

(INTAREA WG, BEHAVE WG) IETF 80-Prague, March 2011

M. Boucadair, J. Touch, P. Levis and R. Penno


Agenda

- Reminder about some address sharing issues
- Why Host_ID is needed?
- How to insert a HOST_ID?
- Solution analysis
- Next steps

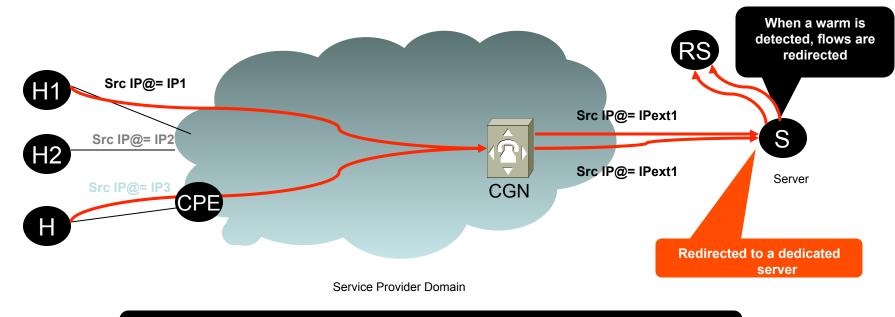
IPv4 Service Continuity


NAT-based Address Sharing

Service Provider Domain

The internal and the external IP addresses may be of distinct address families (e.g., IPv4, IPv6): NAT44 or NAT64

NAT-based Address Sharing



Service Provider Domain

Blacklisting a misbehaving user: The server relies on the source IP address

All subscribers using the same address will be impacted: Loss of users for the content providers, calls to the hotline for the IP Network Provider (\$\$/mn, OPEX loss for the ISP) and unsatisfied customers

NAT-based Address Sharing

Infected machine traffic redirection is based on the source IP address

All subscribers using the same address will be impacted: Difficult to troubleshoot, calls to the hotline for the IP Network Provider (\$\$/mn, OPEX loss for the ISP) and unsatisfied customers

> A more exhaustive list of issues are identified in I-D.ietf-intarea-shared-addressing-issues

Generalizing the issue

- Observation
 - Today, servers use the source IPv4 address as an identifier to treat some incoming connections
 - Tomorrow server does not know which host is the sending host
- Objective

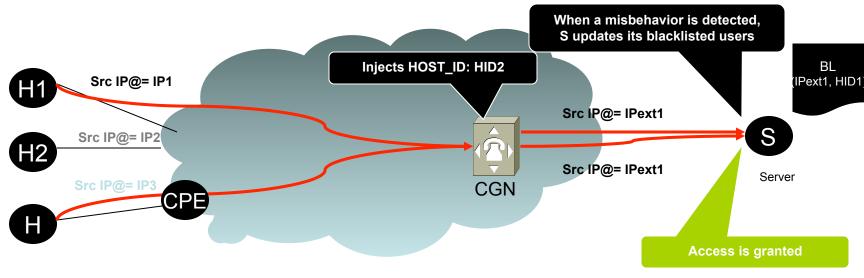
sending host (not only based on the source IP @)

- Requirement
 - The server must have extra information than the source IP address to differentiate the sending host: We call HOST_ID this information

HOST_ID: Rationale

• What is the HOST_ID?

- It must be unique to each user under the same address
- Adding a HOST_ID does not "break" the privacy of the user, it reveals the same information as the source IP address when there is not CGN in the path
- E.g., first bits of an IPv6 address, private IPv4 address, etc.


• Who puts the HOST_ID?

- The address sharing function injects the HOST_ID when it translates IP packets
- The CPE can put the identification in the packet and the CGN checks it instead of doing the actual writing. The performance impact would be distributed/shared between CPE and CGN

• Where is the HOST_ID?

- If the HOST_ID is put at the IP level, all packets will have to bear the identifier
- If it is put at a higher connection-oriented level, the identifier is only needed once in the session establishment phase
 - for instance TCP three-way-handshake

NAT-based Address Sharing (revisited)

Service Provider Domain

Blacklisting a misbehaving user: The server relies on the source IP address **& HOST_ID**

The server needs to be updated to: (1) be able to extract the HOST_ID, (2) Enforce policies based on the HOST_ID, (3) log the HOST_ID

Solutions to reveal the HOST_ID

	UDP	ТСР	нттр	Encrypted traffic	Success Ratio	Possible performance impact	Modify OS TCP/IP stack is needed (*)	Deployable	Notes
IP Option	Yes	Yes	Yes	Yes	30%	High	Yes	Yes	
TCP Option	No	Yes	Yes	Yes	99%	Med to High	Yes	Yes	
IP-ID	Yes	Yes	Yes	Yes	100%	Low to Med	Yes	Yes	1
HTTP Header (XFF)	No	No	Yes	No	100%	Med to High	No	Yes	2
Proxy Protocol	No	Yes	Yes	Yes	Low	High	No	No	
Port Set	Yes	Yes	Yes	Yes	100%	NA	No	Yes	1,3
HIP					Low	NA		No	4,5

(1) Requires mechanism to advertise NAT is participating in this scheme (e.g., DNS PTR record)

(*) Server side

- (2) This solution is widely deployed
- (3) When the port set is not advertised, the solution is less efficient.
- (4) Requires the client and the server to be HIP-compliant and HIP infrastructure to be deployed
- (5) If the client and the server are HIP-enabled, the address sharing function does not need to insert a user-hint. If the client is not HIP-enabled, designing the device that performs address sharing to act as a UDP/TCP-HIP relay is not viable.

IP option, IP ID and Proxy Protocol are broken	XFF is largely deployed in operational networks but still the address sharing function needs to parse all applications				
HIP is not "widely" deployed	messages				
n de ser ser presententes en la companya de la comp	TCP Option is superior to XFF since it is not specific to				
	HTTP but what about UDP? Update the Servers OS TCP/IP is required				
Port Set requires coordination					

What to do with this analysis?

- Recommend a solution?
 - Of course, individual solutions needs to discuss potential impact on performance, mis-usage of the solution to reveal other "sensitive" information, etc.
- Add a conclusion to say: "IETF has documented the issues and has analyzed solution candidates but IETF believes CGN should stay "evil""?
 - Risk of emergence of proprietary solutions
- Add a statement to say: "IPv6 will solve this?"
 - Yes, this is a strong signal but this does not mitigate the service brokenness to be encountered by subscribers when address sharing will be deployed at large
 - The issues are also valid for NAT64

IETF 80th

Next steps?

• Please advise