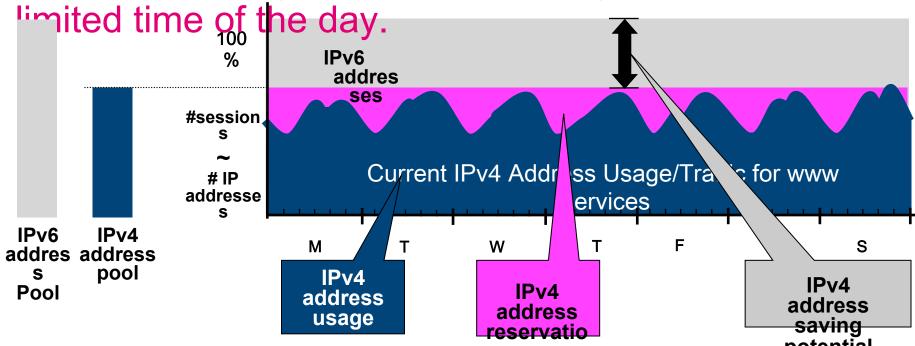
On demand IPv4 address provisioning in **Dual-Stack** PPP deployment scenarios. Karsten Fleischhauer, Fixed Mobile Engineering Germany

Olaf Bonneß, T-Labs

Life's for Sharing


On demand IPv4 address provisioning in Dual-Stack PPP deployment scenarios - draft-fleischhauer-ipv4-addr-saving.

Content.

- Motivation
- Presumptions
- Message Flow
 - assigning IPv4 address parameter
 - releasing IPv4 address parameter
- Next steps

Motivation I/II.

With IPv6 usage for always-on NGN services (Voice) - IPv4 connectivity is furthermore only required for a

- The pure introduction of the Dual-Stack approach does not mitigate the IPv4 address scarcity.
- Due shifting IP traffic to IPv6 the IPv4 traffic demand will be decreased. IPv4 connectivity is just

temporally nécessary. A mechanism which provide an IPv4 address on demand is needed.

This mechanism is already-part of the BBF standardization (WT-242 IPv6 Transition Mechanisms for

Broadband Networks).

Motivation II/II. Avoiding additional load on AAA and providing an IPv4 exit strategy.

avoiding scalability issues on HG and NAS simplify (traffic class based) traffic control

Why distributing 2 prippesses statistement one why have using LGN etc.?

- LGN as last resort solution (complexity, costs etc.) may not become necessary when deploying on-demand IPv4 address provisioning
- eistipliate (draffists: lass dogregationa ffict works lequal to IPv6 introduction
- will impact the customer experience

Whys mot pushing and Wetsit? trategy

- LGN as last resort solution (complexity, costs etc.) may not become necessary when deploying on-demand IPv4 address provisioning
- estimated costs in aggregation networks equal to IPv6 introduction
- will impact the customer experience
- Tdoes not provide an IPv4 exit-strategy

Presumptions.

other) services must be provided on IPv6.

Home Gateway – Customer Devices

- Dual-Stack capabilities on network and application layer
- Traffic and/or timer triggered detection of IPv4 communication demand => assigning / releasing of IPv4 parameters via IPCP

Network/Services

- Dual-Stack capabilities on network and application layer
 Home Gateway Customer Devices
 - Dual-Stack Papasitisis on form work and application layer DIAMETER based)

Traffic and/or timer triggered detection of IPv4 cdemandcationssigning / releasing of IPv4 parameters via TIPCP

Dual-Stack capabilities on network and application laver

The message flow contain 4 blocks.
Assigning and Releasing of the IPv4 address can occur within the PPP session several times in

1.PPP/LCP/IPv6CP setup

⇒ IPv6-only connectivity

. . .

- 2.Assigning IPv4 address parameter (IPCP configuration)
 - Dual-Stack connectivity
- 1.PPP/LCP/IPv6CP setup

 \Rightarrow

- ... IPv6-only connectivity
- 2.Assigning IPv4 address parameter (IPCP configuration)

Dual-Stack connectivity

PPP and IPv6CP Session Setup. Initial the customer will be provided with IPv6-only connectivity.

```
CPE/End System
                               NAS
                                                 ext. Address-
 (PPP Peer)
                                                poolmanagement*
                            (PPP Peer)
2. | <---PPP-LCP-PAP-CHAP--->
                                 ----Access-Request--->
CPE/End System
                                             ext. Address-
5 (PPP | Peer) 6CP-Conf.-Request(PPP | Peer)
                                               poolmanadement*
6. | <-IPv6CP-Configure-Ack---|
1. ->|
2. |<---PPP-LCP-PAP-CHAP---->
3.
                                 ----Access-Request--->
                                 <-Access-Accept-IPv6->
  |--IPv6CP-Conf.-Request-->
     |<-IPv6CP-Configure-Ack---</pre>
```

*) The mechanism will also work when the management of the address pool is done on the NAS.

Assigning IPv4 address parameter. As soon IPv4 traffic demand is detected an IPv4 address will be assigned.

```
CPE/End System
                                NAS
                                                  ext. Address-
 (PPP Peer)
                             (PPP Peer)
                                                 poolmanagement*
1. -> 1
2. |-IPCP-Configure-Request->|
3.
                                 |----Access-Request--->|
4 .
                                 |<---Access-Accept-----</pre>
5. | <-IPCP-Configure-Request-|
6. |---IPCP-Configure-Ack--->|
                                                  ext. Address-
CPE/End System
                                NAS
 (PPP Peer)
                             (PPP Peer)
                                                 poolmanagement*
```

1. -> 1

^{*)} The mechanism will also work when the management of the address pool is done on the NAS.

Releasing IPv4 address parameter When no IPv4 communication exist the IPv4 address can be released.

^{*)} The mechanism will also work when the management of the address pool is done on the NAS.

Next Steps.

Until IETF81:

- Feedback highly welcome!
- Introducing Message Flow in I-D 01 under consideration of WG feedback.

Is this a working topic for the Intarea WG?
If "Yes" => Adopt the I-D as WG topic?

- - -

Thanks for your attention!

Contact:

Karsten Fleischhauer

E-mail:

K.Fleischhauer@telekom.de

Olaf Bonneß

E-mail: olaf.bonness@telekom.de

