Usage/Volume Tier Feedback Use Case for Congestion Exposure

draft-mcdysan-conex-volumetier-usecase-00

Dave McDysan

Outline

- Background
 - Submitted/presented as part of draft-mcdysan-conexother-usecases-00 in Beijing
 - From minutes
 - Some people expressed interest, but others
 - believed out of scope since it was not part of mechanism draft
 - could potentially be built of the conex abstract mechanism
 - Request made to submit individual draft
- Problem Statement & Objectives
- Potential Support using Abstract Mechanism
- Additional Support with other Mechanisms
- Next Steps

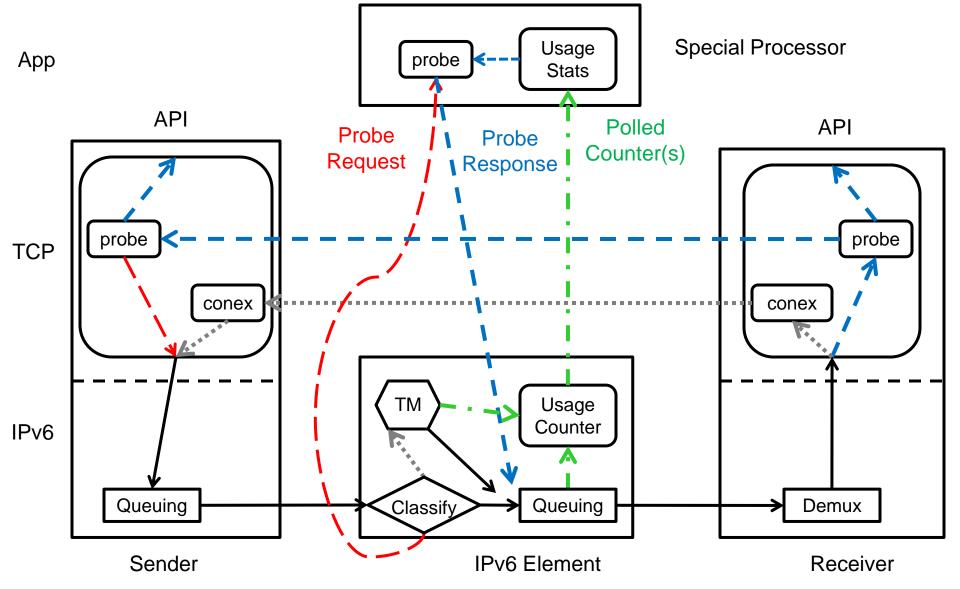
Problem Statement/ Objectives

Problem Statement

- Complex for users to track/manage volume usage
- Volume counting doesn't discriminate between heavy usage when congestion occurs or doesn't
- Need better incentive for LEDBAT style and/or lower effort transport

Objectives

- Inform receiver of cumulative volume and tier crossing trend
- Inform receiver whether congestion counting is occurring
- Standardize on means to indicate to receiver sets of packets not subject to congestion counting
- Enable a means for recharging


Potential Support using Abstract Mechanism

- WG Charter item for standardization of feedback from receiver to sender
 - If made extensible, then many sub-experiments could be performed
- Local implementation functions
 - Counting usage/volume differently based upon abstract mechanism signaled congestion experienced
 - Lower effort marked packet counting
- What is missing is feed forward information that that meets objectives
 - operating over a longer timescale

Additional Support with other Mechanisms

- Usage/volume counter similar to a forwarding queue, but operates over much longer timescale
- Since timescale is large, no need to feed forward information in each packet
 - Most benefit occurs for long-lived, heavy volume flows
 - e.g., video streaming or large file transfer
- Use experimental TCP and IPv6 hop-by-hop options header to implement feed forward "probe" packets from sender to receiver
 - Requires cooperation between TCP sender and receiver similar to that assumed in Conex
 - Needs to be part of TCP flow (e.g., possible experimental use of urgent pointer)
 - "Probe" packets at IPv6 nodes don't require fast path processing
 - these packets could be handled by a "special processor"

Block Diagram of Conex & Additional Mechanism

Probe Request Packet

- Periodically transmitted by sender
- Intercepted by IPv6 element supporting experimental codepoints and forwarded to Special Processor
- Probe Request Contents
 - Request information on the users usage/volume tier
 - Request statistics on usage
 - Request threshold trend report
 - Request not counting this flow since it is lower effort

Probe Response Packet

- Generated by Special Processor from Polled Usage Counters and IPv6 Element config
- Delivered to receiver (and API) and relayed back to sender (and API)
- Contents
 - Duration and cap for the volume measurement tier
 - Packets and octets received/sent
 - Total, conex marked, dropped, lower effort
 - Fraction of the usage tier already used
 - Tier crossing alert if current trend persists
 - A pointer (e.g., URL) and identification of authentication method that for queries
 - alternative charging methods (e.g., recharging)
 - secure method for accessing counters, configuration data
 - Other congestion measures (e.g., Shapley value)

Next Steps

- Inviting others interested in concept to discuss on the list or privately
- Potentially submit to iccrg as a research topic
 - For example, investigation of other measures of congestion (e.g., Shapley value)