## A Solution Approach for AS Relationships-aware Overlay Routing <draft-asai-cross-domain-overlay-01>

Hirochika Asai, U. Tokyo
Hiroshi Esaki, U. Tokyo
Tsuyoshi Momose, Cisco Systems
Mar. 29<sup>th</sup>, 2011, P2P RG, IETF 80 @ Prague

## **Updates from IETF 78**

- Impact evaluation of cross-domain cooperation in CDN (w/ P2P)
  - Oracle-based peer selection (single-hop in app-layer)
    - Selfish
    - Gentle
    - Cooperative
  - Oracle-based content routing (multi-hop in app-layer)
    - To appear in next draft update
      - (Delayed due to the earthquake-related power shortage troubles...)
- Update our simulator
  - But not ready to be open to you yet...

## Background

- P2P traffic (or overlay routing)
  - Against ISPs' traffic engineering
    - Override routing policy of BGP by application-layer routing
- ALTO
  - Intra-domain: probably works
  - Inter-domain: perhaps cause some problems

#### The Internet

- Autonomous systems (ASes)
  - e.g., ISPs, companies, and universities
- Inter-AS economics
  - Transit charge to traffic volume



## Conflicts: ISP vs. Applications

#### Typical ISP's policy (multihome)



## Conflicts: ISP vs. Applications

Typical ISP's policy (BGP anycast)



# Conflicts: ISP vs. Applications

Application-layer routing (peer selection in P2P-CDN)



### Focusing on transit fee of edge ASes



#### AS relationships-aware peer selection

- Oracle-based approach
  - Selfish
    - Destination AS (downloader) view
      - Minimizing incoming transit traffic from providers (transit fee expense)
         w/ AS hop count
  - Gentle
    - Source AS (uploader) view
      - Maximizing outgoing transit traffic to customers (transit fee income)
         w/ AS hop count
  - Cooperative
    - Both destination and source AS view
- Estimation-based approach
  - Presented in IFTF 78
  - Estimation errors affect performance in transit traffic reduction

### Selfish



p2c: Provider to customer

c2p: Customer to provider

p2p: Peer to peer

#### Gentle



p2c: Provider to customer

c2p: Customer to provider

p2p: Peer to peer

**Higher preference** 

### Cooperative



p2c: Provider to customer

c2p: Customer to provider

p2p: Peer to peer

# Impact of cross-domain cooperation (1) Download traffic

#### Breakdown of incoming inter-domain traffic



#### Not so much large impact upon transit traffic from providers

The dataset for this simulation is measured In a BitTorrent CDN network.

# Impact of cross-domain cooperation (2) Upload traffic

#### Breakdown of incoming inter-domain traffic



#### A large impact upon transit traffic to providers/customers

The dataset for this simulation is measured In a BitTorrent CDN network.

# Impact of cross-domain cooperation —Summary—



- Selfish: Selection through download-side preference
  - Bad for upload-side (i.e., free-ride)
- Gentle: Selection through upload-side preference
  - Very good for upload-side, but not so good for download-side
- Cooperative: Selection through cooperative preference
  - Very good for upload-side, and not bad for download-side too

## Deployment considerations

- AS relationships/cross-domain policy
  - Non-disclosure information
  - → AS relationships estimation from measured AS graphs (presented in IETF 78)
- Multi-hop routing in app-layer
  - Requires more discussion and evaluation



Peering-peering paths become available when multi-hop routing in application-layer allowed.

→ Free-ride? A sort of alliance? Content peering?

#### Conclusion

- Impact evaluation of cross-domain cooperation (in peer selection)
  - Cooperation between ASes would
    - strongly increase income of upload-side ASes.
    - reduce expense of download-side ASes.
- Next step
  - "Routing" (not peer selection, multi-hop in applayer)