draft-irtf-hiprg-rfid-02

HIP support for RFIDs

Pascal.Urien@telecom-paristech.fr

http://perso.telecom-paristech.fr/~urien/hiprfid/

What is new in version 02

- Editorial issues
 - Typographic corrections
- Java code for NFC RFIDs added to the draft
 - Only support the T-TRANSFORM 0001
- Experimental platforms
 - Tests with NFC (javacards) RFIDs
 - Tests with smart phone equipped with the NFC technology and (U)SIM (java) cards
 - In progress, tests with Android platform
 - More Info http://perso.telecom-paristech.fr/~urien/ hiprfid/
- Comparison between HMAC or Key-Tree T-Transforms
 - Paper published at IEEE CCNC 2011
 - For N RFIDs, N small, HMAC is more efficient
 - For N RFIDs, N= pⁿ big, Keys Tree is more efficient, with p big and n small

Conclusion: To be done

- # HIT structure for pseudo-random coding
 - Proposal ?
 - Done in an other draft?
- Secure Channel establishment
 - To be specify by an other draft.
- HEP (HIP Encapsulation Protocol)
 - To be specify by an other draft.
- Java code for RFIDs to be improved
 - T-TRANSFORM 0002 support

HIP-RFID in a Nutshell

About RFIDs

- What is an RFID?
 - An RFID is an electronic device that delivers an identity (ID) thanks to radio means.
- Link with the Internet Of Things (IoT)
 - A Thing is associated with a RFID
- RFID have limited computing resources
 - Electronic chip, whose area ranges from 1mm² to 25mm²
 - RFIDs are usually powered by readers.
 - Very low power consumption.
- Objective of this draft
 - Defining a protocol for RFIDs, compatible with the IP ecosystem.
 - Enforcing strong privacy, i.e. no information leakage for unauthorized ears.
 - Managing secure channel with RFIDs (Optional)
 - Crypto Agility: cryptographic procedures adapted to RFIDs computing resources.

HIP-RFID Overview

- Modified BEX exchange
 - Negotiation of the security scheme (HIT-T-TRANSFORM attribute).
 - Third and fourth message are MACed (typically with a HMAC function)
 - Fourth message is optional, only mandatory when a secure ESP channel has been negotiated.
 - This SHOULD be specified in a new draft
 - ESP MAY be used for read write operation.
- The HIT is a 16 bytes random number
 - MAY include a fix part
 - To be fixed
- RFIDs never expose their identity in clear text, but hide this value (typically an EPC-Code) by a particular equation (f) that can be only solved by a dedicated entity, referred as the PORTAL.
 - f(r1,r2, ID)
 - f can be anything that works
 - An integrity key is computed from KI-AUTH-KEY = g(r1,r2,ID)
- HIP exchanges occurred between RFIDs and PORTALs; they are shuttled by IP packets, through the Internet cloud.

HIP-RFID Architecture

*HEP: HIP Encapsulation Protocol

Protocol Overview

T-TRANSFORM 0001, HMAC

- + K = HMAC-SHA1(r1 | r2, ID)
- 4
- 4

T-TRANSFORM 0002, Keys-Tree

