

PACKET PWE3 – EFFICIENT FOR IP/MPLS

IETF79 (BEIJING) – NOV 7-12, 2010 SRIGANESH KINI DAVID SINICROPE

PROBLEM STATEMENT

- Need for a packet service that can carry any protocol (similar to an Ethernet pseudowire)
- Service should be efficient for the most common protocol carried by the service
- IP and MPLS are pre-dominant protocols in many deployments
- Packet service efficient for IP/MPLS is useful

SERVICE MODEL

- Service is modeled as a VPWS that can carry packets of any protocol
 - Henceforth referred to as Packet Pseudowire (**PPW**)
- Efficient encapsulation defined for PPW over an MPLS PSN
 - Henceforth referred to as "Packet Pseudowire Efficient for IP/MPLS" (PPW-EIM)

- A single layer-2 (virtual) circuit is an access circuit (AC) to a PPW-EIM
- An AC of a PPW-EIM must not encapsulate another layer-2 circuit. E.g. in a Q-in-Q scenario, S-tag cannot be an AC to a PPW-EIM since it has multiple C-tags

SOLUTION - WITH CONTROL-WORD

- CW is used to signal whether the packet is of type IP, MPLS or 'other'
- IP and MPLS packets encapsulated in PW without layer-2 header
- For non IP/MPLS packets, the layer-2 header is included. The protocol type in the layer-2 header indicates the layer-3 protocol type.

- Packet following bottom of label-stack is always IP
- Since there is a single bottom-of-stack bit in MPLS label stack, MPLS packets don't need special identification
- For non IP/MPLS packets, an IP header encap (GRE) is used for the entire packet (including layer-2 header). A non-routable IP address is used as destination IP address to indicate that packet is non IP/MPLS.
- > Even if intermediate nodes hash based on IP header there is no re-ordering.

EXAMPLE: ROUTER INTERCONNECT

- R1, R2 routers running LLDP, ISIS on the inter-connecting p2p IP/MPLS interface
- > PE1, PE2 PEs providing VLL service using PPW-EIM
- > IP/MPLS traffic encapsulation in MPLS PSN has no layer-2 header
- PE1 and PE2 encapsulate LLDP, ISIS packets (including layer-2 header) into GRE (if no CW is used) or following the CW (when CW is used)

CONCLUSION

- Lesser bandwidth used.
- Fragmentation is reduced for jumbo IP/MPLS packets
- > Multi-layer network in-efficiency reduced
- > Enables flow based applications to parse packets efficiently even if there are multiple layers.
 - This includes ability to do ECMP based on IP (a widely deployed capability today)

V/S DRAFT-BRYANT-PWE3-PACKET-PW-03 (VIRTUAL ETHERNET)

- Advantages
 - Lesser bytes on the wire (Bandwidth efficient)
 - Less chance of fragmentation (throughput efficient)
 - IP ECMP is possible (even for multi-layer networks)
 - FAT-PW is not necessary for ECMP
- Disadvantages
 - Not possible to carry layer-2 circuit encapsulated inside a layer-2 circuit
 - For the no CW case GRE encapsulation is more involved

DRAFT POSITIONING

This draft is positioned as an enhancement to using the ethernet PW as a packet-PW.

EFFICIENCY ANALYSIS

		Total packet size in PSN					 Efficiency as %age gain in end-					Efficiency as %age of bandwidth			
										FIM					FIM
							PPW-	EIM (no C	CW) v/s	(with		PPW-E	IM (no (CW) v/s	(with
		PWE3-ETH			PPW-EIM		PWE3-ETH -			CW)+flo		PWE3-ETH -			CW)+flo
		<			<		2					>			
		t C	≥	$\stackrel{+}{\geq}$	ţ	$\stackrel{\tau}{\geq}$	t C	≥	× –	$\stackrel{+}{\geq}$		t C	≥	$\stackrel{+}{\geq}$	× −
0		nou	С Ч		nou	U L L L L L L L	nou	С Ч	k C	ت ع د ع		nou	С Ч	רא רא	LE C
E <		wit	wit	wit flov	wit	wit flov	wit	wit	wit	wit		wit	wit	wit flov	wit flov
IP Payload size (end-user data)	40														
AC Payload Size - IP	60														
Ethernet Header size (untag)		96	100	104	82	90	35%	45%	55%	35%		15%	18%	21%	13%
802.1q single tag		100	104	108	82	90	 45%	55%	65%	45%		18%	21%	24%	17%
802.1ad double tag		104	108	112	82	90	 55%	65%	75%	55%		21%	24%	27%	20%
	400														
IP Payload size (end-user data)	128														
AC Payload Size - IP	148														
Ethernet Header size (untag)		184	188	192	170	178	 10.9%	14.1%	17.2%	10.9%		7.6%	9.6%	11.5%	7.3%
802.1q single tag		188	192	196	170	178	 14.1%	17.2%	20.3%	14.1%		9.6%	11.5%	13.3%	9.2%
802.1ad double tag		192	196	200	170	178	 17.2%	20.3%	23.4%	17.2%		11.5%	13.3%	15.0%	11.0%
												-			
IP Payload size (end-user data)	512														
AC Payload Size - IP	532														
Ethernet Header size (untag)		568	572	576	554	562	2.7%	3.5%	4.3%	2.7%		2.5%	3.1%	3.8%	2.4%
802.1q single tag		572	576	580	554	562	3.5%	4.3%	5.1%	3.5%		3.1%	3.8%	4.5%	3.1%
802.1ad double tag		576	580	584	554	562	4.3%	5.1%	5.9%	4.3%		3.8%	4.5%	5.1%	3.8%

Comments Welcome

Packet PWE3 - Efficient for IP/MPLS | November 2010 | Page 12