ConEx Specification for Modification to TCP

ConEx – 79. IETF Beijing – 11th Nov. 2010

Mirja Kühlewind <mirja.kuehlewind@ikr.uni-stuttgart.de>

University of Stuttgart, Germany

Outline: ToC of the up-coming I-D

- 1. Introduction
 - 1.1. Overview of the ConEx Abstract Mechanisms
 - 1.2. Overview of the IPv6 Encoding
- 2. TCP Handshake Negotiation
- 3. Sender Modification
 - 3.1. Full ConEx Mode
 - 3.2. ECN-Co Mode
 - 3.3. Sender-only Mode
 - 3.4. Recommendation for ConEx Credits
- 4. Receiver (Optional Modifications)

TCP Handshake Negotiation (1)

SYN: Use TCP NS = 1 (ECN Nonce bit) to indicate ConEx support

- MUST/SHOULD request ECN support as well: NS = CWR = ECE = 1

SYN/ACK: Receiver is ConEx enable set CWR: CWR = 1, ECE = 0

- NS bit can be used to signal congestion information of SYN (if SYN ECN-enabled)
- CWR = ECE = 1 should not be used because buggy receiver might just echo SYN bits
- Otherwise receiver replies as specified for ECN: CWR = 0, ECE = 1 or CWR = ECE = 0
- → 3 ConEx modes: Receiver is ConEx-enabled or just ECN-enabled or none of both
- No changes to ECN (RFC 3168: The Adoption of ECN to IP)
- No support of ECN Nonce (RFC 3540: Robust ECN Signaling with Nonces)

TCP Handshake Negotiation (2)

+	+	_+	+	+			_ + -				+	++
ConEx	Nonce	e ECN	–		SYN Z	A-B		SYN	ACK	B-A	A-B Mode	B-A Mode
	+	-+		+	CWR	ECE	- + -	NS	CWR	ECE		++
AB		I		1	. 1	1		Х	1	0	ConEx	ConEx
A	В		I	1	. 1	1		1	0	1	ECN-Co	ECT-Nonce
A		B	I	1	. 1	1		0	0	1	ECN-Co	ECT
A		I	B	1	. 1	1		0	0	0	Sender-only	Not-ECT
+	+	-+	+	+			-+-				+	++

Questions

- Should ConEx be bundled with ECN capability at the sender? Or is there a case for a request for drop-only ConEx?
- Should ConEx always set SACK-Permitted Option in SYN (RFC 2018)?
- Use of NS in SYN/ACK? Enable ECN on SYN (with different coding) to avoid SYN packet drops?
- Middlebox issues?

- Set ConEx bits in IP header (based on selected coding scheme in IPv6 draft)
- Monitor number of drops; number of ECN markings from receiver feedback (depending on mode)
- No modifications to TCP congestion control (required)

Questions

- Credit signal processing mandatory or just recommended?
- Handling of pure ACKS, retransmissions, window probes...?
- Should these related questions be discussed in this draft?
 - Requirements for dropper design based on credit processing + related security considerations
 - Congestion control/management

Receiver (Optional Modifications)

Changes only needed if receiver is ConEx enabled

- Monitor number of ECN markings
- Signal total number of ECN-markings to sender in TCP header of ACK
 - RFC 3168 (The Addition of ECN to IP): Receiver sets the ECE bit in every packet after observing a CE mark form the network until a data packet with the CWR bit set is received

 \rightarrow Not more than one ECN congestion signal per RTT

- Give feedback on all observed ECN-markings & be robust against loss of ACKs
- Different mechanism for feedback encoding needed (by using the **NS**, **CWR** and **ECE** bit)

Question

- How encode ECN feedback in the ACK ?
 - Max. number of two feedback markings per ACK (delayed ACKs -> RFC 2158: TCP Congestion Control)?
 - → 3-bit counter (internal counter for the total number of seen CE markings, proposed by re-ECN to encode counter value modulo 8)
 - \rightarrow Signal additional number of ECN markings + ACK loss detection
 - \rightarrow Some kind of redundancy (sending the same information in subsequent ACKs)...
 - \rightarrow Other proposals???