NATx4 Port Allocation and Logging

[Cheng] draft-cheng-behave-nat44-pre-allocated-ports-01[Tsou] draft-tsou-behave-natx4-log-reduction-02[Durand] draft-durand-server-logging-recommendations-00

Note Nokia-Siemens IPR declaration on [Tsou]

[durand]

- Recommends logging of source port and address and timestamp at server as well as other information
- Complementary to the other two drafts, won't be mentioned further

[Cheng] vs. [Tsou]

- [Cheng] and [Tsou] describe schemes for allocating ports at the NAT44 in blocks, to reduce the logging volume
 - Log only when blocks allocated, rather than each time a port is allocated
 - Both allow randomization
- Primary differences between [Cheng] and [Tsou]:
 - [Cheng] puts a static per-subscriber limit on total ports allocated.
 [Tsou] allocates blocks without limit as required.
 - [Tsou] considers block deallocation. [Cheng] does not mention it.
- [Cheng] (maybe) and [Tsou] have issue of garbage collection (return of unused ports to common pool)
 - Tradeoff between randomization, clearance of little-used blocks
 - How soon to free block where all ports appear to be idle

Static port management

Pros:

- simple to understand
- DHCP-style logs
 - Log initial port range and be done.

Cons:

- Security
 - port randomization entropy is reduced to bucket size
 - Easy to mount attacks if bucket is small
- Operation
 - No mechanism to extend bucket
 - Complex failures when port range is exhausted
 - Usually leads to very large buckets
 sub-optimal use of IP address
 5000 ports/user => 10 user/IP address

Dynamic port management

Pros:

- Large statistic multiplexing
- All users: Average 5 port/user
 - 10,000 users/IP address
- Active users only: Average 100 ports/user
 - 650 users/IP address

Cons

- Need to log each NAT binding
- I binding: 16 bytes, 2000 cnx/user/day, 6 month logs, 1,000,000 users = 5.6 Terabyte of data
- 1 binding: 20 bytes, 10000 cnx/user/day, 2 year logs, 1,000,000 users = 150 Terabyte of data

Is Lot of data to store/archive/search

Hybrid port management: buckets

Solution 1

- Allocate ports in small buckets of random ports, say 20 at a time
 - When port is released, return it to free pool
- Log creation of bucket, not each flow
- Divide log volume & messages by 20

Pros:

- Better logs
- Preserve randomization
- Small impact on IP utilization ratio

Cons:

- Still lot of logs
- More complexity to manage buckets

Hybrid port management: static + dynamic buckets

Solution 2

- Based on solution 1
- Ist bucket is "special":
 - Larger (eg 200 ports)
 - Released ports are put back in the bucket to be reused by the same user
- Other buckets works the same as solution 1
- Create a static random set of ports per user, with possibility to add new ports as needed

static + dynamic buckets analysis

Security

- Initial bucket is made of random ports
 - But an attacker could discover them
- Subsequent buckets are totally random

Operation

- Guarantees a minimum of ports per user
- Extend dynamically that range if/when needed
- Logs reduced to zero for users who stay in their initial bucket
- Multiplexing: about 250 users per IP address

Conclusion

- Port management offers a trade-off: log size vs address oversubscription ratio
 - Static management:

•

- No logs, low over-subscription ratio
- Dynamic management:
 - High volume of logs, high over-subscription ratio
- Hybrid methods:
 - Medium to small volume of logs, medium over-subscription ratio

Backup Slides

Details of Proposals

[Cheng] Message Flow

