CERNET IPv6 multicast design and deployment

X. Li, C. Bao 2010-11-11

Outline

- Introduction
 - CERNET IPv4 multicast
 - CERNET2 IPv6 multicast
 - TEIN2/3 IPv4/IPv6 multicast
- CERNET2 IPv6 multicast
 - Design and implementation
- IPv4/IPv6 multicast translation
 - Prefix specific stateless translation (IVI)
 - Multicast IVI

CERNET (IPv4)

- CERNET is the first (1994) nation wide Internet backbone in China.
- CERNET ranks 30 in global CIDR report.
- Over 2,000 universities on CERNET with about 20M subscribers.

CERNET Multicast beacon

CERNET Multicast AccessGrid

CERNET2 (IPv6)

Built in 2004, with national coverage

 CERNET2 is the largest IPv6 backbone in China.

 About 200 universities connected to CERNET2 with about 2M subscribers.

CERNET2 Multicast beacon

TEIN3 (IPv4/IPv6)

TEIN2/TEIN3 multicast beacon

SIGCOMM 2007 via TEIN2

Multicast Topology @ SIGCOMM 2007

- Streaming through TEIN2 IPv6 multicasts;
 - Audience:
 - INHERENT universities (Indonesia)
 - · MYREN universities (Malaysia)
 - · UNINET universities (Thailand)
 - Client application : VideoLAN
 - Streams: 1Mbps and 5Mbps

smjoin6 ff7e:240:2001:200:0:ff01:0:100 -p 8000 -c -1 -k 3000

TEIN2 traffic

CERNET2 multicast design

- CERNET2 is an IPv6-only network
- We try to design a scalable and controllable IPv6 multicast network
- The challenges are
 - The individual (non-aggregate) state in the multicast forwarding path has to be maintained to map the specific group address to a set of destination unicast address in a specific time.
 - The state is dynamic, triggered by the joins/leaves of the receivers.
 - The source addresses which are sending packets to the specific group address have to be found in order to form the distribution tree.

CERNET2's approach

- Provide IPv6 SSM only service
- Only a special IPv6 block can serve as multicast source
- Embed bandwidth parameter into the IPv6 group address
- Static join in PEs
- Provide ASM to SSM translation service

SSM

Multicast source

- CERNET2 address plan 2001:da8::/32
 - Each campus network will get
 - A /48 for unicast
 - 2001:da8:200::/48
 - A /64 for multicast source
 - 2001:da8:3ffe:200::/64

Group address

The (W) represents the service throughput

- W= 0x8: 100 Kbps,
- W= 0xC: 1 Mbps,
- W= 0xE: 10 Mbps,
- W= 0xF: 100 Mbps.

Static join

- There will be no dynamic join and state changes in the core network and this will make the core more stable;
- The join convergence time will be eliminated;
- It is possible to do the source and group aggregation in the future.

ASM to SSM translation

CERNET2: 100 campus project

Prefix specific and stateless Translation

IETF standards

C. Bao Internet Engineering Task Force (IETF) Request for Comments: 6052 CERNET Center/Tsinghua University Updates: 4291 C. Huitema Category: Standards Track Microsoft Corporation ISSN: 2070-1721 M. Bagnulo UC3M M. Boucadair France Telecom X. Li CERNET Center/Tsinghua University October 2010 IPv6 Addressing of IPv4/IPv6 Translators

behave F. Baker
Internet-Draft Cisco Systems
Intended status: Informational X. Li
Expires: November 19, 2010 C. Bao
CERNET Center/Tsinghua University
K. Yin
Cisco Systems
May 18, 2010

Framework for IPv4/IPv6 Translation
draft-ietf-behave-v6v4-framework-09

Network Working Group X. Li
Internet-Draft C. Bao
Intended status: Informational M. Chen
Expires: July 10, 2010 H. Zhang
J. Wu
CERNET Center/Tsinghua University
January 6, 2010
The CERNET IVI Translation Design and Deployment for the IPv4/IPv6

Coexistence and Transition draft-xli-behave-ivi-07

behave X. Li
Internet-Draft C. Bao
Obsoletes: 2765 (if approved) CERNET Center/Tsinghua University
Intended status: Standards Track F. Baker
Expires: November 19, 2010 Cisco Systems
May 18, 2010

IP/ICMP Translation Algorithm
draft-ietf-behave-v6v4-xlate-20

BEHAVE WG M. Bagnulo
Internet-Draft UC3M
Intended status: Standards Track P. Matthews
Expires: January 11, 2011 Alcatel-Lucent
I. van Beijnum
IMDEA Networks
July 10, 2010

Stateful NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers
draft-ietf-behave-v6v4-xlate-stateful-12

BEHAVE WG M. Bagnulo
Internet-Draft UC3M
Intended status: Standards Track A. Sullivan
Expires: April 4, 2011 Shinkuro
P. Matthews
Alcatel-Lucent
I. van Beijnum
IMDEA Networks
October 1, 2010

DNS64: DNS extensions for Network Address Translation from IPv6 Clients to IPv4 Servers draft-ietf-behave-dns64-11

Translation scenarios

IVI Scenario 1 "an IPv6 network to the IPv4 Internet" < NAT64 Scenario 2 "the IPv4 Internet to an IPv6 network"

Scenario 3 "an IPv4 network to the IPv6 Internet" < NAT64
Scenario 4 "the IPv6 Internet to an IPv4 network"

Scenario 5 "an IPv6 network to an IPv4network" < NAT64
Scenario 6 "an IPv4 network to an IPv6 network"

Scenario 7 "the IPv6 Internet to the IPv4 Internet" Scenario 8 "the IPv4 Internet to the IPv6Internet"

Stateless translation concepts

Operation scenarios

- Stateless mode (IVI) supports
 - Scenario 1
 - an IPv6 network to the IPv4 Internet
 - IPv4 sending and IPv6 joining
 - Scenario 2
 - the IPv4 Internet to an IPv6 network
 - IPv6 sending and IPv4 joining
 - Scenario 5 and scenario 6
 - Same as scenario 1 and scenario 2
- Stateful mode (NAT64) supports
 - Scenario 1
 - an IPv6 network to the IPv4 Internet
 - IPv4 sending and IPv6 joining
 - Scenario 3
 - the IPv6 Internet to an IPv4 network
 - IPv4 sending and IPv6 joining
 - Scenario 5
 - Same as scenario 1

Routing

IVI Multicast support

- SSM is supported for the IVI
 - no MSDP in IPv6
 - no embedded RP in IPv4
- Group address mapping rule (there will be 2²⁴ group ID available)

```
- 232.0.0.0/8 → ff3e:0:0:0:0:0:0:0000/96

- 232.255.255.255/8 → ff3e:0:0:0:0:0:f0ff:ffff/96
```

- For the cross address family SSM
 - the source address in IPv6 has to be IVI6 for the RPF scheme
- The inter operation of PIM-SM in IPv4 and IPv6
 - Application layer gateway
 - Static join using IGMPv3 and MLDv2

Remarks

- Multicast is very useful for academic applications
- IPv6 multicast has more flexibility
- Tools and router access are both important.
- IPv6 multicast configuration and debugging process is an enjoyable process (-: