

ECN for RTP over UDP/IP draft-ietf-avt-ecn-for-rtp-02

Magnus Westerlund Ingemar Johansson **Colin Perkins** Piers O'Hanlon Ken Carlberg

Changes Since -01

- Clarified that congestion response can be sender or receiver based, and that application awareness of ECN is expected
- Expanded use of RFC 2119 language
- Updated Section 6 on processing of RTCP ECN Feedback in RTP Translators and Mixers
 - Congestion-unaware fragmentation and reassembly
 - Media transcoders
 - Mixers
- Various editorial clarifications

Fragmentation and Reassembly

- Translators may fragment or reassemble packets, unaware of network congestion state
 - E.g., combine two VoIP packets into one
- Handling of ECN bits for RTP packets follows RFC 3168
 - Split \rightarrow copy ECN marks
 - Combine \rightarrow pick worst ECN mark

 Need to specify how RTCP is processed in the translator

sequence assigned

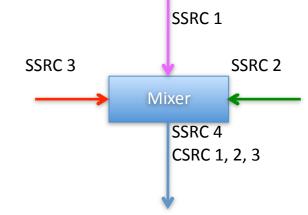
Fragmentation and Reassembly: RTCP

- Determine the sequence number range for post translation packets
- Derive pre-translation sequence
 number range
- Calculate ratio of packets across translator: R = numTrans / numOrig
- Rewrite extended RTP sequence number and scale counters by R, to match translation

- Rounding may be needed if scaling leads to non-integer counter values
 - Try to ensure sum of counters matches numOrig after scaling
 - Try to ensure no non-zero counter is rounded to zero avoid losing events
 - If these goals conflict, avoiding rounding to zero more important

Fragmentation and Reassembly: RTCP

- Questions and open issues:
 - Is this scaling meaningful?
 - Believe so, if the level of congestion in the network is primarily driven by the number of packets sent. We assume this is the case where such translators are deployed
 - ECN nonce reports are not translated
 - But they're not meaningful, since they relate to particular RTP packets that don't exist on the other side of the RTP translator


ECN Processing in Media Transcoders

- Transcoders are RTP translators
 - No SSRC; invisible to other RTP-layer entities
- Interpose into the RTCP session
 - Generate RTCP ECN feedback to the sender, as if it were the media receiver
 - Process RTCP ECN feedback received from the receiver, as if it were the media sender
 - Two separate congestion control loops run:
 - Between sender and transcoder
 - Between transcoder and receiver
 - MUST NOT forward RTCP ECN feedback across the transcoder, since the ECN feedback for one control loop is not relevant to the other

ECN Processing in Mixers

- An RTP mixer acts as an endpoint for ECN purposes
 - Treats all paths independently
 - For each path:
 - Negotiate capability and check path support
 - Generate RTCP ECN feedback for outgoing stream
 - Respond to ECN feedback from receiver, run congestion control loop
 - Possible that some paths support ECN, others don't
 - MUST NOT forward RTCP ECN feedback across the mixer, since the ECN feedback for one path is not relevant to the other paths

Open Issues and Next Steps

- Feedback on RTCP ECN feedback handling from the group
- To do in next version:
 - Clarify how ECN is used in layered sessions
 - IANA considerations and assign parameters
 - Add SDP signalling example

• Aiming to be ready for WG last call by IETF 79