

China Telecom ALTO/P4P Trial

draft-lee-alto-chinatelecom-trial-00

Contents

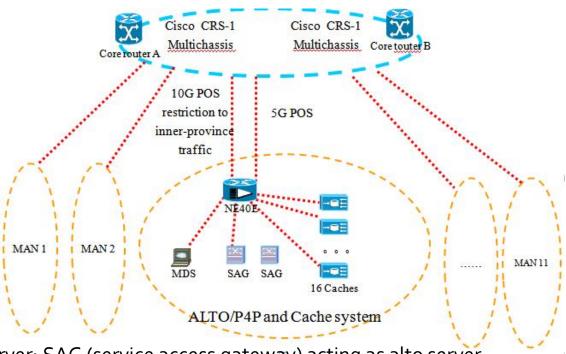
- ☐ Trial settings
- ☐ Trial results

Participants

- ☐ Network: China Telecom
 - ➤ The largest broadband service provider in China. Serving over 60 million fixed-line broadband subscribers
 - More than 200 MAN networks managed by 31 provincial networks
- P2P Application: Xunlei (also called Thunder)
 - Serving 20 million users each day
 - Contributing ~20% inter-province traffic in the trial network

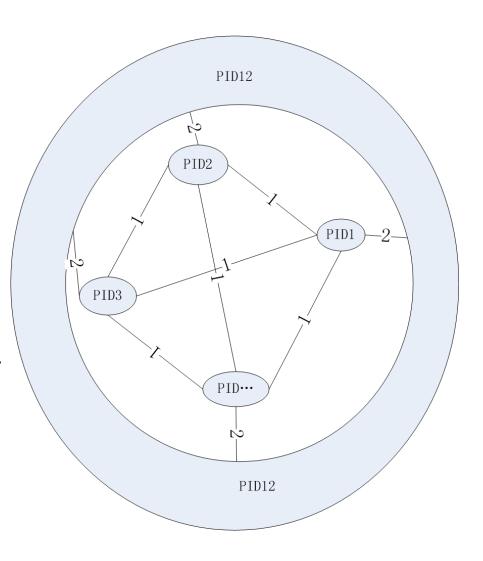
Trial Configuration: Network

□ Trial conducted in one provincial network with 7 million broadband subscribers and 11 MAN networks


☐ Trial network deploys both ALTO/P4P Server and Cache Servers

Trial Configuration: Network Components

- □ ALTO/P4P Server: SAG (service access gateway) acting as alto server
- □ Cache: 16 Caches with 1.8TB storage and 15 Gbps BW
- Management: MDS (Management and Deployment System) provides a browser-based interface network operators:
 - Update the information about network topology, geography location of IP address, etc.
 - Define traffic management policy
 - Monitor the SAG and p2p Cache running states
 - Analyze the statistics of xunlei P2P traffic



ALTO/P4P Network Configuration

- Report results of a simple setting
- □ PID Map: We define 11 PIDs
 - ➤ PID1-PID11 represent the 11 MANs of the trial network
 - PID12 represents rest of the Internet
- Cost Map:
 - Bidirectional cost between any PIDs from PID1 to PID11 has the same value 1
 - Bidirectional cost between PID12 and PIDi (1<=i<=11) has the same value 2

Trial Configuration: Xunlei

- Xunlei is a hybrid application utilizing both trackers and DHT
- About 85% of Xunlei traffic controlled by Xunlei trackers
- Trial modifies only Xunlei trackers
- Xunlei tracker peer selection algorithm before trial:
 - Utilizing two properties: ISP ID and UC (upload capability)
 - > Peer selection priority:
 - Same ISP ID > different ISP ID
 - Higher UC > lower UC

Xunlei's Trial Algorithm: Utilizing ALTO/P4P Info

- With ALTO/P4P information, the ISP ID of a peer in the trial province changes to "ISP ID_PIDx", where PIDx is the PID to which the peer belongs
 - Example: the original ISP ID of a peer in the trial province is "ct", and the peer's IP address belongs to PID1, then the ISP ID of the peer is "ct_PID1"
- Updated peer selection priority:
 - > Same ISP ID > Different ISP ID > ISP ID with PIDx suffix
 - Higher UC > lower UC
- ☐ If a listing request is from the trial province, the maximum # of returned peers from xunlei tracker is set to 120, not the normal case of 500.

Data Collection Methods

- Measuring performance by both CT and Xunlei
 - CT measurement: using ISP's network OAM system and DPI system
 - OAM: Total (including Xunlei and others) inbound/outbound
 SNMP traffic flow statistic
 - DPI: Detect Xunlei traffic flow; monitor the uplink (only uplink direction) from the province to China Telecom's backbone.
 - Xunlei measurement:
 - Inter-province/intra-province traffic flow statistics [by sampled client logs]
 - Average user download speed

	Comcast Trial	CT Trial
Contents	One content (22 MB) divided into 5 swarms for comparison	All Xunlei file/streaming contents in 4 months
ALTO/P4P conf.	Coarse-grain (22 PIDs) and fine-grain (1182 PIDs)	12 PIDs
P ₂ P App/Peer Selection Alg.	Pando/Coarse-grain; Fine-grain; Generic	Xunlei's algorithm (slide 8)
Utilizing Cache	No	Yes (16 servers)
Monitoring	Pando client logs	Xunlei logs; CT's NMS system; CT's DPI detection

Trial Results: No Caching Servers

- □ Reduction of Xunlei inter-province outbound traffic
 - > 42.77 Gbps (51% of outbound)
- □ Reduction of total inter-province outbound traffic
 - > 31.58 Gbps
- □ Reduction of total inter-province inbound traffic
 - > 12.86 Gbps
- Average user download speed
 - ➤ Slows down ~10%

- Adding caches (16 caches, 1.8TB each and 15 Gbps total BW)
- □ Reduction of Xunlei inter-province outbound traffic
 - > 40 Gbps (~50%)
- □ Reduction of total inter-province outbound traffic
 - > 39.18 Gbps
- □ Reduction of total inter-province inbound traffic
 - > 28.3 Gbps
- Average user download speed
 - > 5% increase with 4 Gbps cache BW, and 80% cache occupancy

Conclusions and Future Work

- ALTO/P4P information can substantially reduce Internet egress/ingress traffic
- Observed slight slowdown (~10%) in application speed without cache servers
- □ Network storage can recover lost speed:
 - 4 Gbps ISP cache BW => 40 Gbps egress BW reduction and 5% speedup
- Future work:
 - Evaluate more details on the slow down and determine possibility of improving speed
 - Broader deployment and more diverse types of applications
 - □ Collect ISP configuration and P2P application algorithm guidelines/best practices and contribute to ALTO.

Any comments or questions?

