
ripfix: Rapid Prototyping and Debugging of
IPFIX Applications in Ruby
Brian Trammell <trammell@tik.ee.ethz.ch>
Communication Systems Group, ETH Zürich

The Problem

  IPFIX is based on a machine-efficient but not particularly
human-manipulable or easily debuggable representation
  AAoBp0wzRUMAAAAAAADd1QACAKwE0gAOAUIABAAIAAQADAAEAAcAAgALAAKBmQAEAACK7

oGSAAEAAIrugZP//wAAiu6Bnv//AACK7oGW//8AAIrugZf//wAAiu6BlP//AACK7oGV//

8AAIrugZj//wAAiu4Q4QALAUIABAAIAAQADAAEAAcAAgALAAKBmQAEAACK7oGcAAIAAIr

ugZIAAQAAiu6Bnf//AACK7oGW//8AAIrugZf//wAAiu4E0gCmS7PydMCoAAPAqAACl...

  IPFIX implementations often optimized for performance,
not “tweakability”

  Lots of things that would lead to greater implementation,
application, and adoption of IPFIX are harder than they
should be:
  Testing, debugging, disambiguating interoperability issues
  Trying out new ideas, extensions, IEs, applications, etc…

Wednesday, July 28, 2010 2 Communication Systems Group

The solution

  Need an IPFIX implementation optimized for development,
as opposed to production use:
  Ease of building new applications that use IPFIX

 general “ease of (developer) use”
  Ease of building new general IPFIX tools for debugging

 applications with no internal data model
  Ease of modifying the implementation itself

 rapid prototyping of protocol extensions

  Support “rough consensus and (rapid) running code.”

Wednesday, July 28, 2010 3 Communication Systems Group

Ruby

  Duck-typed, object-oriented, interpreted* language
  Suited to rapid development, not rapid processing
  Relatively complete standard library

  Socket interface easy to use good for little network apps

  Simple to write methods/classes in C
  No SCTP support, no problem ripfix provides SCTP::Endpoint

Wednesday, July 28, 2010 4 Communication Systems Group

Design

  Principle of Least Surprise
  Classes map to entities in the protocol

  Message, Template, OptionsTemplate, InfoElement, etc.

  Data records written/read as Ruby Hashes of Symbols to
native Ruby types
  String, Fixnum, IPAddr, etc.

  Use of Ruby Enumerable idiom (each())
  Templates and Information Models specified as strings

  defined in draft-trammell-ipfix-text-iespec-00
  also supports IANA XML registry, but this is somewhat slow

  Type system for transcoding
  Information Element has a type, which can encode/decode value

Wednesday, July 28, 2010 5 Communication Systems Group

Design Details

Wednesday, July 28, 2010 6 Communication Systems Group

type.rbmodel.rbmessage.rb

Operation
Operation

length
export_time
sequence
domain
record_count

Message

on_template_add
on_template_remove
on_bad_sequence
add_template
remove_template
each_template
check_sequence
increment_sequence

templates
next_sequence

Session

<<
each
spec
encode_template_record
decode_template_record
encode_hash
decode_hash

tid
count
min_length
@elements

Template

add_scope
scope_count
OptionsTemplate

spec
parse_spec
for_size
for_reverse
is_ep?
is_varlen?

name
pen
number
size
hashkey

InfoElement

load
load_v9_compatible
load_default
load_reverse
load_xml
save
type_for_number
type_for_name
ie_for_number
ie_for_name
ie_for_spec
add
each

types
typesByName

InfoModel

encode
decode
parse

name
number
size

Type

<<
append_avail
shift
shift_avail
rewind
limit
limit=
string
dump

length
a

Buffer

accept_id?
set_id

SetBuffer

Buffer

UnsignedType
SignedType
BooleanType
FloatType

IPAddressType
MACAddressType
SecondsType

MillisecondsType
NTPType

Supports

  RFC 5101 (mostly, see next)
  TCP as transport
  RFC 5103 biflows
  RFC 5655 files (basic)
  draft-trammell-ipfix-text-iespec
  going and getting a cup of coffee while you wait for large

data sets to process.

Wednesday, July 28, 2010 7 Communication Systems Group

Future plans

  Complete IPFIX over SCTP support
  TLS/DTLS (need bindings)
  Template withdrawals
  Faster buffer and type implementation (in C)
  Metadata: 5610, 5655, ipfix-anon
  draft-ietf-ipfix-structured-data
  draft-ietf-ipfix-per-sctp-stream, better stream management
  More rigorous unit testing, resultant bugfixes
  UDP, template expiration and retransmission (messy)
  …

Wednesday, July 28, 2010 8 Communication Systems Group

Experiences

  On-the-fly interop testing
  rfdump tool used to track the at-fault implementation in an interop

disagreement without having to drop to a hex editor.

  Slightly less boring demonstrations of IPFIX applications
  Need to show someone what IPFIX looks like without walking them

through a hexdump? rfcollect (rfdump over TCP).

  Generation of examples for SIPCLF
  Initial requirement: Hacking up IPFIX stuff in WG meetings

  Quick and dirty analysis tools
  select-and-project, aggregation for visualization, etc.

Wednesday, July 28, 2010 9 Communication Systems Group

How to get it

  http://ripfix.rubyforge.net
  Under active development

  Interfaces may change at any time for no reason at all
  but since the design parallels the protocol, not in nonsensical ways
  Watch out for any class not listed on Slide 6.

  SCTP support included, but not yet integrated
  We try to keep broken code out of the released gem, but…

  Please download, suggest, contribute!
  trammell@tik.ee.ethz.ch

Wednesday, July 28, 2010 10 Communication Systems Group

ADDITIONAL SLIDES

SCTP support for Ruby

Wednesday, July 28, 2010 11 Communication Systems Group

SCTP::Endpoint

  Attempt to put a Ruby interface atop all features of SCTP.
  An Endpoint is a 1-to-1 or 1-to-many socket
  Sends and receives SCTP::Message objects

  Encapsulates content, stream, remote endpoint
  SCTP::Socket wraps Endpoint for a more Ruby Sockets-like

interface
  Direct extension would not be particularly clean.

  Interface even more experimental than ripfix (will change)
and essentially undocumented.
  Defined for multihoming, but not yet supported

  No interop testing yet.
  Requires (of course) working SCTP on host system.

  Only tested on Mac OS X, some Linuxes.

Wednesday, July 28, 2010 12 Communication Systems Group

