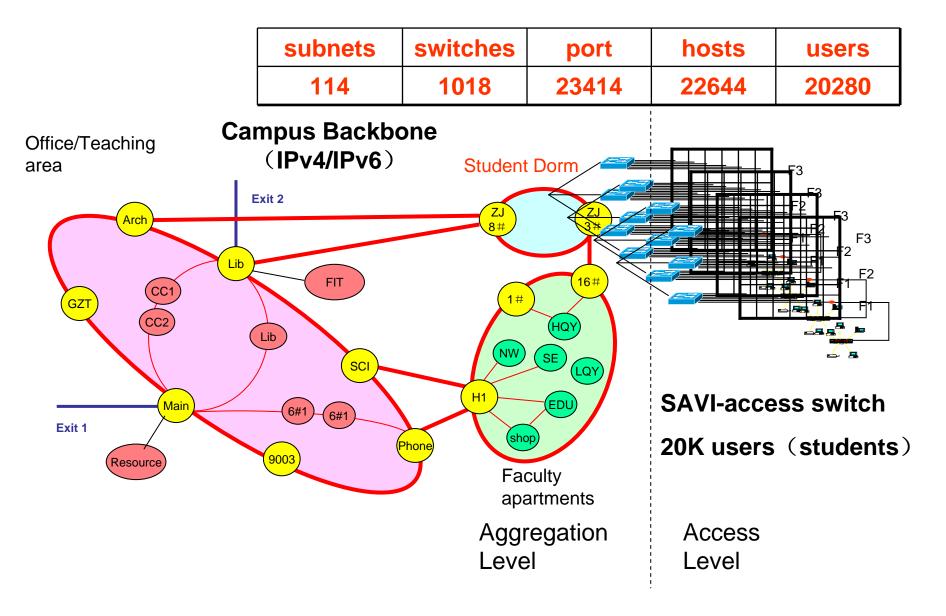
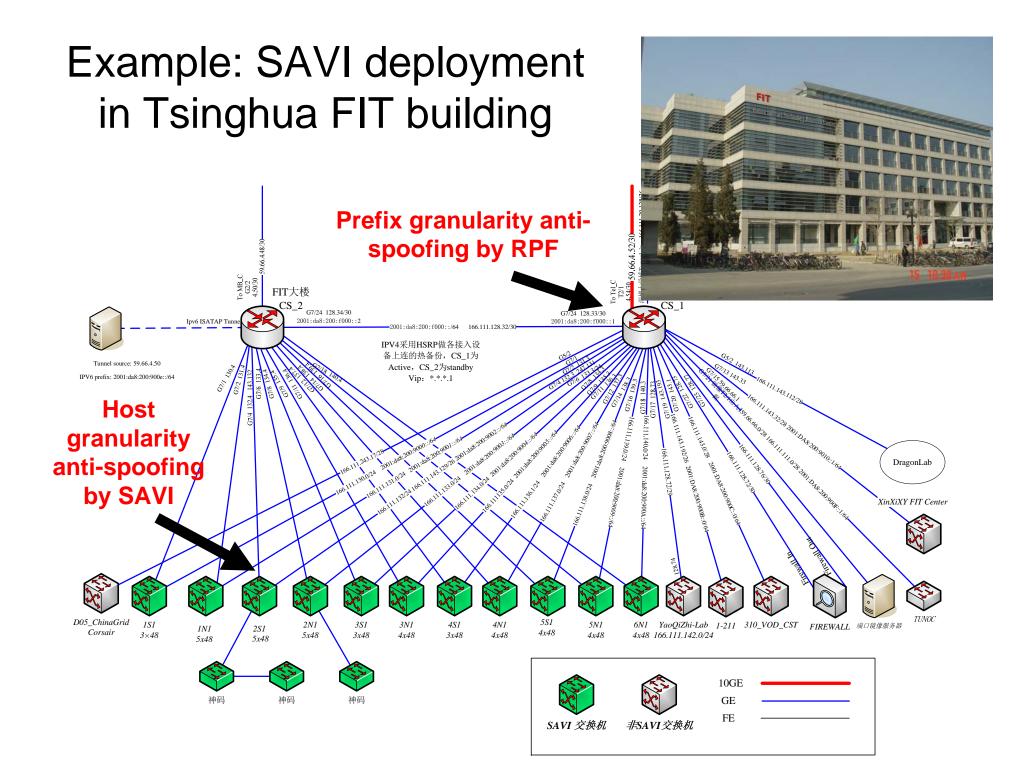
CNGI-CERNET2 SAVI Deployment Update

China Education and Research Network (CERNET) /Tsinghua Univ. IETF77, Anaheim March 23, 2010

Outline

- SAVI Deployment in CNGI-CERNET2
- SAVI Switches Testing
- SAVI Management System and MIB Design
- Discussion on SAVI-SLAAC
- Conclusion


Brief Introduction


- CNGI is China Next Generation Internet
- CNGI-CERNET2
 - CERNET: was the 2nd Large ISP in China, 2000+ university campus networks, 20M+ users
 - CERNET2 is the largest IPv6 network
- CNGI-CERNET2 SAVI Deployment Plan
 - 100 universities campus networks nationwide
 - 1 Million users
 - Time frame: 2008-2010
 - SAVI software upgrade at about 20K+ access switches
 - SAVI management system installation in 100 campuses
- China Telecom signed collaboration agreement with Tsinghua Univ. on IPv6 SAVI collaboration recently

SAVI switches installation:100 Univ. campus net (red dot)

Example: Tsinghua Univ. campus network is being deployed (software upgrade at access switch)

Scenarios in Deployment

- DHCP-only
 - Only DHCP and link local address are allowed.
 - DHCP and link local address snooping are enabled.
- SLAAC-only
 - Only SLAAC address is allowed.
 - SLAAC snooping is enabled.
- DHCP-SLAAC-Mixed
 - DHCP and SLAAC address are allowed.
 - DHCP snooping and SLAAC snooping are enabled.
- Static addresses (usually for servers) are manually configured in the above scenarios.

Scenarios in Deployment

- Each administrator selects the address assignment scenario in its subnet
 - E.g. Tsinghua uses dhcp-slaac-mixed
- SEND is considered the same as SLAAC
- dhcp-snooping implementation in switch conforms to draft-savi-dhcp-02 (without optional functions)
- slaac-snooping implmentation in switch conforms to draft-bi-stateless-00
 - Will be discussed in the last part of this ppt
- All SAVI-switches have been tested
 - Will be discussed in the next part of this ppt

Prioritization

- Static address has the highest prior
 - The administrator make sure the static address won't be assigned by dhcp server
 - Only the administrator can remove
- Stateless and DHCP addresses are treated equally.
 - Once bound, always bound during lifetime (unless the host is off-link)
 - A host has to detect conflict after assigned an address by DHCP (in dhcp-slaac-mix scenario)

• Snooping

- Enabled at global view or vlan view
- Command line: XXX Snooping enable
 - Start snooping and binding
 - Drop the server-end message(DHCP reply, RA) by default, except for packets from anchor with attribute XXX-Trust
- For example, in DHCP-only senario:
 - <u>Dhcp snooping enable</u>
 - <u>NDP snooping link-local enable</u>
- Undo XXX snooping
 - Stop snooping
 - Stop filter server-end message
- SHOULD write memory if snooping is enabled, and enable snooping automatically after reboot.

• Verification

- Enabled at port view

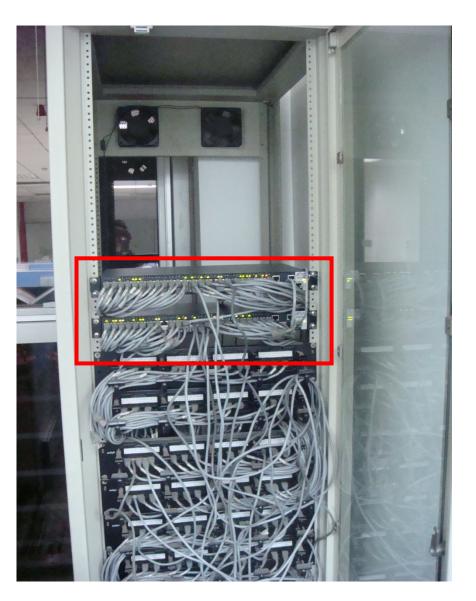
– IP check source IP-address

- Port configuration
- Attached to monitored host
 - <u>IP check source IP-address</u>
- Attached to router or DHCP server/relay
 - <u>RA trust</u> or <u>DHCP trust</u>
- Fully trusted port
 - <u>RA trust</u> and <u>DHCP trust</u>
- Default port
 - No configuration

View & Modification

- At global view

- View: show all the IPv6 bindings
 - <u>display ipv6 check source binding table</u>
- Modification: add or del bindings manually
 - <u>ipv6 check source binding table add IP XXX</u>
 <u>MAC XXX PORT XXX TYPE XXX [LIFETIME XXX]</u>
 - <u>Ipv6 check source binding table del IP XXX</u>
 <u>PORT XXX</u>


Console Example

[H3C]dis ip chec	ck source ipv6			
lotal entries fo	ound: 4			
MAC		VLAN	Port	Туре
001d-09b6-a763	2001::7D1B:A5AE:44DE:FCB1	2	GigabitEthernet1/0/3	ND-SNP
001d-09b6-a763	FE80:::B47E:14DD:166D:89E0	2	GigabitEthernet1/0/3	ND-SNP
001d-09b6-a763	2001::B47E:A4DD:166D:89E0	2	GigabitEthernet1/0/3	ND-SNP
001d-09b6-a763	2001::1004	2	GigabitEthernet1/0/3	DHCPv6-SNP

Binding State Table of <u>H3C</u> S5500 Entry: Source IP | Source MAC | Vlan ID | Type(DHCP or ND)

Real Deployment

- FIT Building of Tsinghua Univ
- From Oct 2009 (about 5 months)
- No initial DAD-NS loss observed (link local addr bound)
- <u>Digital China</u>
 S3950 Switches

Real Deployment

^{3950-52CT-132-7#show ipv6 rdp snooping} at a 24-ports switch, multiple addr per host

NDP Snooping binding count 61, static binding O

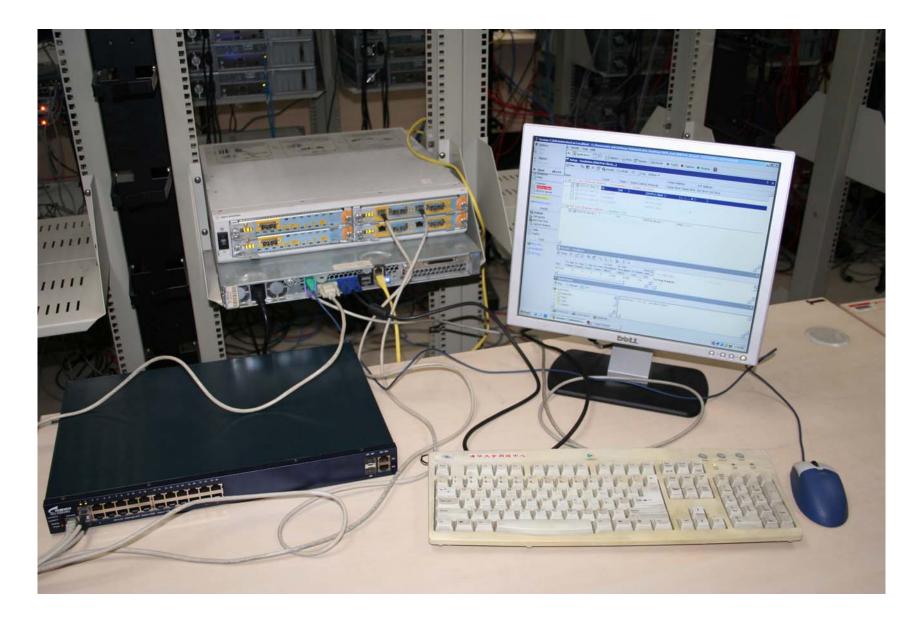
MAC	IPv6 address	Interface	Vlan iD	State
00-1d-0f-12-44-f9	2002:a66f:cb72:7:316e:d6ac:b96:ea7a	Ethernet0/0/47	1	SAC_BOUND
00-1d-0f-12-44-f9	2001:da8:200:9002:316e:d6ac:b96:ea7a	Ethernet0/0/47		SAC_BOUND
00-16-41-a8-b7-2f	2001:da8:200:9002:216:41ff:fea8:b72f	Ethernet0/0/29	1	SAC_BOUND
00-16-41-a8-b7-2f	2001:da8:200:9002:3562:2a49:1012:b475	Ethernet0/0/29	1	SAC_BOUND
00-16-41-a8-b7-2f	fec0:::7:216:41ff:fea8:b72f	Ethernet0/0/29	1	SAC_BOUND
00-16-41-28-b7-2f	2002:a66f:cb72:7:216:41ff:fea8:b72f	Ethernet0/0/29	1	SAC_BOUND
00-16-41- <mark>18-17-2</mark> 5	2002:a66f:cb72:7:3562:2a49:1012:b475	Ethernet0/0/29	1	SAC_BOUND
00-12-17-2a-3d-e9	2001:da8:200:9002:212:17ff:fe2a:3de9	Ethernet0/0/31	1	SAC_BOUND
00-12-17-2a-3d-e9	fec0:::7:212:17ff:fe2a:3de9	Ethernet0/0/31	1	SAC_BOUND
00-12-17-2a-3d-e9	2002:a66f:cb72:7:212:17ff:fe2a:3de9	Ethernet0/0/31	1	SAC_BOUND
00-12-17-2a-3d-e9	fe80::212:17ff:fe2a:3de9	Ethernet0/0/31	1	SAC_BOUND
00-0d-61-9b-40-e6	fec0::7:20d:61ff:fe9b:40e6	Ethernet0/0/24	1	SAC_BOUND
00-0d-61-9b-40-e6	2002:a66f:cb72:7:20d:61ff:fe9b:40e6	Ethernet0/0/24	1	SAC_BOUND
00-0d-61-9b-40-e6	2002:a66f:cb72:7:f1d2:fd1d:2a62:45a0	Ethernet0/0/24	1	SAC_BOUND
00-0d-61-9b-40-e6	2001:da8:200:9002:20d:61ff:fe9b:40e6	Ethernet0/0/24	1	SAC_BOUND
00-0d-61-9b-40-e6	2001:da8:200:9002:f1d2:fd1d:2a62:45a0	Ethernet0/0/24	1	SAC_BOUND
00-0d-61-9b-40-e6	fe80::20d:61ff:fe9b:40e6	Ethernet0/0/24	1	SAC_BOUND
00-1e-4f-9d-c5-7e	2002:a66f:cb72:7:f458:b6f4:a175:bdbc	Ethernet0/0/5	1	SAC_BOUND
00-1e-4f-9d-c5-7e	2001:da8:200:9002:f458:b6f4:a175:bdbc	Ethernet0/0/5	1	SAC_BOUND
00-1d-0f-12-44-f9	2002:a66f:cb72:7:5cfd:52ce:8dc1:f6c3	Ethernet0/0/47	1	SAC_BOUND
00-1d-01-12 At -ta	2001:da8:200:9002:5cfd:52ce:8dc1:f6c3	Ethernet0/0/47	1	SAC_BOUND
00-1a-6b-5c-5e-5c	fec0::7:21a:6bff:fe5c:5e5c	Ethernet0/0/33	1	SAC_BOUND
00-1a-6b-5c-5e-5c	2002:a66f:cb72:7:21a:6bff:fe5c:5e5c	Ethernet0/0/33	1	SAC BOUND
00-1a-6b-5c-5e-5c	2001:da8:200:9002:21a:6bff:fe5c:5e5c	Ethernet0/0/33	1	SAC BOUND
00-1a+6b+5c-5e-5c	fe80::21a:6bff:fe5c:5e5c	Ethernet0/0/33	1	SAC BOUND
00- <u>ter H1-19</u> d- <u>ce</u> -72	2001:da8:200:9002:1935:bccc:64a:adb4	Ethernet0/0/5	1	SAC BOUND
00-1e-4f-9d-c5-7e	2002:a66f:cb72:7:1935:bccc:64a:adb4	Ethernet0/0/5	1	SAC BOUND
00-1d-0f-12-44-f9	2002:a66f:cb72:7:412c:6704:32e9:b4e1	Ethernet0/0/47	1	SAC BOUND

SAVI Switch Testing

SAVI-Software upgradable

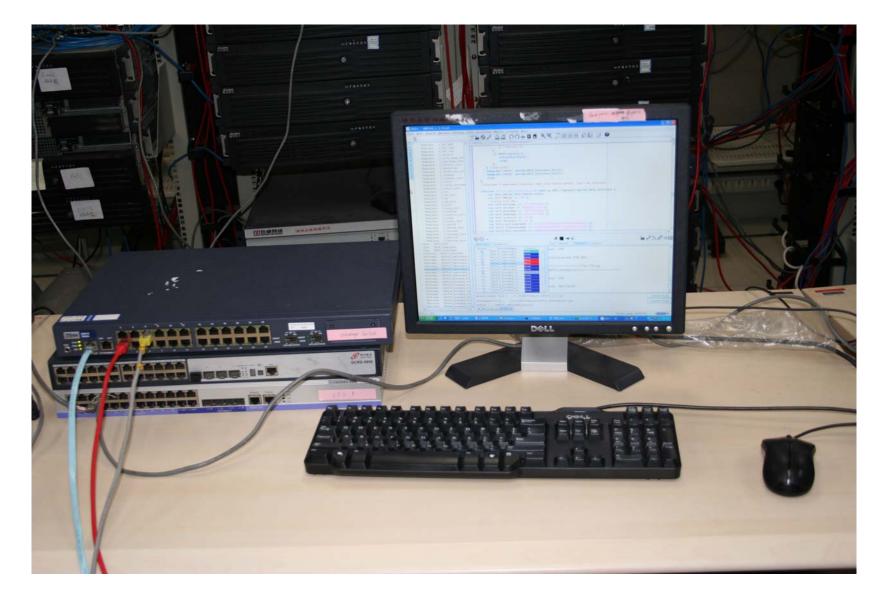
- Savi-upgradable switches in our deployment
 - H3C (3Com): S5500EI, S5500SI, S5120EI, E126A, E152, E328, E352
 - ZTE: ZXR10 8900,5900,3900A
 - Digital China (spun off from Lenovo): DCRS-5950,3950
 - Ruijie: RG-S8600,S5750,S5760,S2900,S2600
 - Bitway: BitStream 7000, 6000, 3000
 - Centec: E600 and E300
- Cisco and Huawei are also interested to collaborate with CERENT2 to upgrade

SAVI switch test for 100 campus networks


Catalogs of SAVI Testing

- Conformance testing
- Performance testing
- Test-bed (interoperability) testing

SAVI Switch under Test (form difference vendors)


Performance Testing (AGILENT N2X)

Performance Testing: SAVI filtering enabled for dhcpv6/slaac/mixed/static

Throughput	78bytes	-
	79bytes	-
	512bytes	-
	1518bytes	-
Delay	78bytes	μs
(Min/Average/Max)	79bytes	μs
	512bytes	μs
	1518bytes	μs
Packet loss	78bytes	-
	79bytes	-
	512bytes	-
	1518bytes	-

Conformance Testing (TTCN3 based testing system developed by Tsinghua)

Conformance Testing: DHCP-only

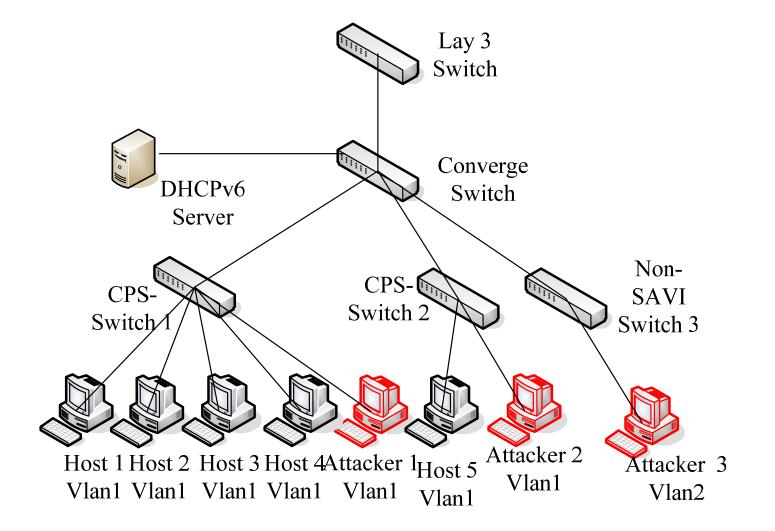
2. 1. 1	DHCP Solicit	Use unbounded link-local addr send DHCP-Solicit
2.1.2	DHCP Solicit-Advertise	Use bounded link-local addr send DHCP-Solicit then receive Advertise
2.1.3	DHCP Request	Use unbounded link-local addr send DHCP-Request
2.1.4	DHCP Request-Reply	Use bounded link-local addr send DHCP-Request then received reply
2.1.5	DHCP Confirm	Use unbounded link-local addr send DHCP Confirm
2.1.6	DHCP Confirm-Reply	Use bounded link-local addr send DHCP Confirm then received reply
2.1.7	DHCP Decline	Use bounded and unbounded link-local addr send DHCP Decline
2.1.8	DHCP Release	Use bounded and unbounded link-local addr send DHCP Release
2.1.9	DHCP Rebind	Use bounded and unbounded link-local addr send DHCP Rebind
2. 1. 10	DHCP Renew	Use bounded and unbounded link-local addr send DHCP Renew

Conformance Testing: SLAAC-only

2.2.1	LinkLocalAddr_ DAD-NS	Send DAD-NS Use LinkLocal Addr as Target
2.2.2	LinkLocalAddr_ DAD-NS_NA	Send DAD-NS Use LinkLocal Addr as Target and received NA
2.2.3	LinkLocalAddr- RS	Use bounded and unbouneded link-local addr send SLAAC RS
2.2.4	Global Addr- DAD-NS	Use unbounded and bounded Global addr send DAD NS without receivd NA.
2.2.5	Global Addr- DAD-NS-NA	Use unbounded and bounded Global addr send DAD NS then receivd NA

Conformance Testing: DHCP-SLAAC-MIX

2.3.1	DHCP Request	Send DHCP Request use bounded and unbounded addr Under MIX
2.3.2	DHCP-DAD-NS	Send DHCP Request then send DAD NS use Bounded and unbounded addr without received NA
2.3.3	DHCP-DAD-NS-NA	Send DHCP Request then send DAD NS use Bounded and unbounded addr with received NA
2.3.4	DHCP-Confirm-NS	Send DHCP Confirm then send DAD NS use Bounded and unbounded addr without received NA
2.3.5	DHCP-Confirm- NS-NA	Send DHCP Confirm then send DAD NS use Bounded and unbounded addr with received NA


Conformance Testing: Static address

2.4.1	Static	Check static Binding's
	Binding	function

Test-bed (interoperability) testing

Test-bed (interoperability) testing

Testbed testing: DHCPv6-only

- Host movement (across ports in one switch)
- Host movement (across switches)
- Topology change (switch uplinks to another port of the upstream switch)
- Topology change (switch uplinks to another upstream switch)
- Switch reboot
- NDP can not setup binding
- Address conflict (within one switch)
- Address conflict (across switch)
- Static address binding in dhcp-only scenario

Testbed testing: SLAAC-only

- Host movement (across ports in one switch)
- Host movement (across switches)
- Topology change (switch uplinks to another port of the upstream switch)
- Topology change (switch uplinks to another upstream switch)
- Switch reboot
- DHCP can not setup binding
- Address conflict (within one switch) Address conflict (across switch)
- Static address binding in slaac-only scenario

Testbed testing: DHCP-SLAAC-mix

- Host movement (across ports in one switch)
- Host movement (across switches)
- Topology change (switch uplinks to another port of the upstream switch)
- Topology change (switch uplinks to another upstream switch)
- Switch reboot
- DHCP and SLAAC co-existence
- Address conflict (within one switch) Address conflict (across switch)
- Static address binding in dhcp-slaac-mix scenario

Interoperability test for host OS

- Windows XP with SP3
- Windows Vista
- Windows 7
- Linux
- MAC OS (to be tested)
- Some dhcpv6 client software

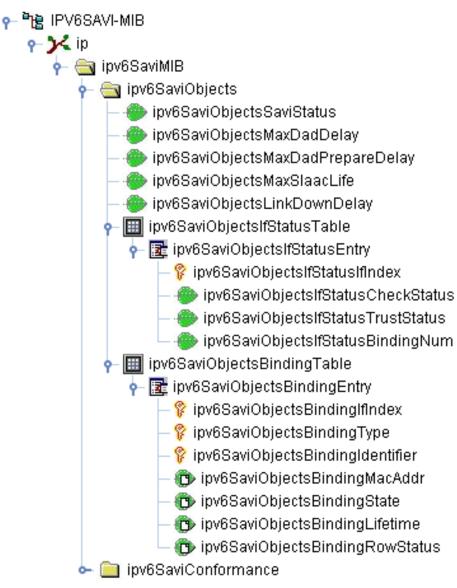
SAVI Management System and MIB Design

Motivation

- The CERNET Network Center is designing a Network management system for SAVI
- Set and Get SAVI status using standard management protocol like SNMP
- Provide standard operation interface for manager

Function

- Set :
 - SAVI-DHCP or SAVI-SLAAC function
 - Anchor (switch port) type
 - Binding limitation of anchor
- Get:
 - Binding State Table entries
 - Filtering Table entries
 - Statistics


CERNET2 SAVI Management System

SAVI Management System	Ipv65avi0bjectsBindingTable					
	Ifindex 🔺	Identifier	MacAddress	Туре	State	Lifetim
🗗 Switch Mode	1	fe80::20f.f7ff;feab:35cc	A9-B4-C5-D6	dhcp	bound	12345
	2	2001:da8:200:900b:79e8:72d6:6f84:175	00-01-6C-44-E6-93	slaac	start	60002
🗗 Interface Mode	3	2001:da8:200:900b:78f3:52b4:6237:769	C0-A8-7E-01	static	detection	46000
	4	fe80::20f:f7ff;feb0:5dc	2F-63-5D-8A	slaac	query	679
>>> Binding Table	5	2001:da8:200:900b:201:6cff.fe44:e693	01-00-5F-8D	dhcp	bound	544
	6	fe80::23f:f7ff;fea0:5dc0	11-5D-6F-33	static	bound	2345
 Filter Information Statistic Information 						
				S	Show the records from 1 to 6, the to	

Structure of SAVI-MIB

- Two separate MIB tree
 - IPV4SAVI-MIB for IPv4
 - IPV6SAVI-MIB for IPv6
 - They have Similar Structure
- Following we illustrate IPV6SAVI-MIB

MIB tree

Structure of IPV6SAVI-MIB

- ipv6SaviObjectsStatus
 - SAVI-DHCP/SAVI-SLAAC Status
- ipv6SaviObjectsMaxDadDelay, ipv6SaviObjectsMaxDadPrepareDelay,
 - constants of SAVI
- ipv6SaviObjectsIfStatusTable
 - Validation type of anchor
 - Trust type of anchor
 - Binding limitation of anchor
- ipv6SaviObjectsBindingTable
 - Binding State Table entries

Structure of IPV6SAVI-MIB

- ipv6SaviObjectsIfStatusTable
 - ipv6SaviObjectsIfStatusIfIndex
 InterfaceIndex,
 - ipv6SaviObjectsIfStatusCheckStatus Integer32,
 - ipv6SaviObjectsIfStatusTrustStatus Integer32,
 - ipv6SaviObjectsIfStatusBindingNum Unsigned32

Structure of IPV6SAVI-MIB

ipv6SaviObjectsBindingTable

- ipv6SaviObjectsBindingIfIndex InterfaceIndex,
- ipv6SaviObjectsBindingType
 Integer32,
- ipv6SaviObjectsBindingIdentifier InetAddressIPv6,
- ipv6SaviObjectsBindingMacAddr MacAddress,
- ipv6SaviObjectsBindingState
 Integer32,
- ipv6SaviObjectsBindingLifetime TimeInterval,
- ipv6SaviObjectsBindingRowStatus
 RowStatus

OID For SAVI-MIB

- Parent OID: IP
 - Because SAVI-MIB provide binding information at IP layer.
- sub-identifier
 - The sub-identifier of IP has been used up to 39.
 - 40 for IPV4SAVI-MIB
 - 41 FOR IPV6SAVI-MIB
- Need register a IANA NUMBER for the SAVI MIB

Discussion on SAVI-SLAAC

Solution Scope

- Solution for all stateless addresses, including
 - -IPv6 SLAAC address
 - IPv4/v6 non-static manually configured address

Core problem for SAVI-SLAAC

- How to determine the ownership of an address when conflict happens?
- On the aspect of host:
 - DAD is unreliable: NS/NA loss, inactive node, malicious node
- On the aspect of SAVI-device:
 - It is hard or even impossible to determine who is the first to use an address without reliable DAD:
 - First sniffed \neq First used
 - Detection is unreliable, and may be cheated

A Compromise Solution without Reliable DAD

- Principle:
 - RFC4862 allows host to configure an address after it finishes a DAD, without caring the address might be actually conflict with other hosts due to unreliable DAD (NS/NA loss, inactive node, etc.)
 - Then the goal of SAVI-SLAAC conforms to RFC4862, like "best effort" source address validation
 - Don't try to fix problem of RFC4862 in SAVI, if necessary, fix it in SLAAC itself (re-chartering)

Binding Set-up Mechanism

- If SAVI switch detects an node finishes a successful DAD by Control plane snooping, then bind the address
- The initial DAD-NS might be loss, two options
 - Data-triggered probe (heavy cost to access switch but automatic), or
 - Host repairs the network connection (CERNET2 use this option, but really didn't meet this problem)
- An address might be bound with multiple nodes due to the unreliable DAD (e.g. inactive node, NA loss), but RFC4862 allows

Binding Removal Mechanism

- Only remove a binding:
 - Lifetime expires (Lifetime equals prefix lifetime sniffed from RA)
 - After the savi-device detects the anchor turns off-link for a certain period (when savi-device directly connects to host)

Control Plane Snooping based action vs. Data Triggered action

- Control packet snooping MUST be enabled
- Data trigger action CAN be enabled on the required anchors to handle special cases
 - The trade-off between savi-swtich-automaticly or host-manually repairs for special cases is left to network administrator
 - CNGI-CERNET2 make it an optional function.
 if administrators need, then can ask higherend switch to implement the optional function

Experience of CERNET2 SAVI-SLAAC deployment

- Make SAVI solutions as simple as possible

 low end access switch can implement by
 simply software upgrade
- Then SAVI can be deployed widely at access switches directly connects with host
- Then get the better "best effort" results
 - single-host granularity anti-spoofing
 - easily handle the binding removal when host off-link or moving
 - easily handle switch rebooting

Experience of CERNET2 SAVI-SLAAC deployment

- Data triggered binding brings much cost to switch based on feedbacks from vendors
 - More temporal states to keep and memory occupation
 - Consume more CPU computation resource
 - Potentially DoS attacks
 - Hard to do rate limit in reality
 - If do rate limit for CPU slow path in a switch, then all slow path packets will be affected (high end router may be more intelligent), then more important control packets can't be processed by CPU, will cause more serious problem

Conclusions

Conclusions

- SAVI drafts have been implemented by multiple vendors and being largely deployed in CERNET2
 - draft-ietf-savi-dhcp-02
 - draft-bi-savi-stateless-00
- SAVI switches in CNGI-CERNET2 have been fully tested
- SAVI management system and MIB have been designed
- A light-weight savi-slaac is necessary for low end access switch for large scale deployment
 - Currently, no major problem found
 - For details: draft-bi-savi-stateless-00

Thank You! Q & A