IETF 77

Coexistence of Address Assignment Methods

or

HOW TO DEAL WITH BINDING COLLISIONS in an HETEROGENEOUS ENVIRONEMENT?

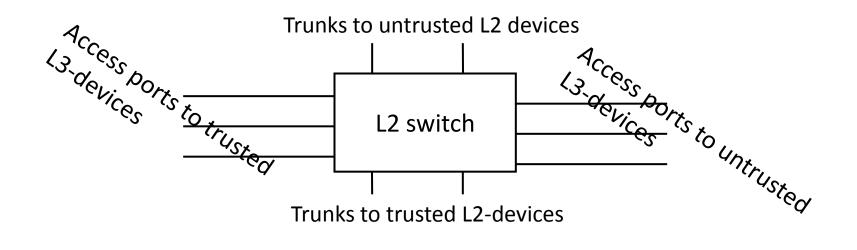
What is a binding collision?

- Entry [<u>IP Address, vlan</u>, anchor] exists in the binding table
- Collision happens when a candidate entry with same key [<u>IP Address, vlan</u>] and anchor' ≠ anchor is « discovered »
- →How to choose one over the other? FCFS? Discovery method? Best credentials? ...?

What is an heteroneous environment?

- Different discovery methods (NDP, DHCP, data, Static, etc.)
- Different credentials carried by messages used by the various methods
- Different origins for messages used by various methods
- → In real world, no one-fits-all discovery method, credentials, origins.

Variety of methods for discovering bindings


- DHCP-snooping
- NDP snooping
- Data snooping
- Statically created
- « Local » to the switch (L2/L3)

- →Collisions within one method is usually wellunderstood/defined (FCFS, LCFS, etc.)
- \rightarrow Collisions between two methods is TBD

Variety of credentials carried by messages (and relatives) used for the discovery

- No credentials
- Consistent SMAC & Layer link-layer address
- Cryptographically proven
- Certificate proven
- EAP proven

Variety of origins for messages used for the discovery

How to compile all variables? How to compare different sets?

 \rightarrow DHCP-discovered vs NDP with CGA?

 \rightarrow Static entry vs DHCP-discovered

 \rightarrow NDP on trusted access vs DHCP on untrusted access

 \rightarrow ...

Preference level

- A. We define preference "factors", preference value and preference level:
 - A "factor" is associated with
 - a property of the port from which the entry was discovered
 - a property of the discovery method
 - o or a property of the binding itself
 - Each factor is given a number 0 ≤ f ≤ n: the bigger, the more prevalent
 - We compute the preference value of a factor as 2 ^f
 - We compute Preflevel = ∑preference_values associated with a binding

Factors

From least to most prevalent, proposed factor values /preference values are:

- / 0. NDP-SNOOPING:
 - The entry was learnt by snooping NDP traffic (DAD, etc.) LLA (found at L3) and MAC (found at L2) are identical
- 0 / 1. LLA MAC MATCH: / 2. TRUNK PORT: The entry was learnt from a trunk port (connected to another switch)
- 1 2 / 4. The entry was learnt from an access port (connected to a host) ACCESS PORT:
 - TRUSTED PORT: The entry was learnt from a trusted port
- 3 / 8. 4
 - / 10. TRUSTED TRUNK: The entry was learnt from a trusted trunk
- / 20. DHCP SNOOPING: The entry is assigned by DHCP 5
- The entry is CGA authenticated / 40. CGA AUTHENTICATED: 6
- 7 / 80. EAP AUTHENTICATED: The entry is EAP authenticated
- /100. CERT AUTHENTICATED: The entry is authenticated with a certificate 8
- 10 /200. this is a operator configured entry (static or local) STATIC:

Example

Binding Table has 3 entries, 3 dynamic Codes: L - Local, S - Static, ND - Neighbor Discovery, DHC - DHCP

Preflevel flags (prlvl):

0001:MAC and LLA match	0002:Orig trunk	0004:Orig access
0008:Orig trusted access	0010:Orig trusted trunk	0020:DHCP assigned
0040:Cga authenticated	0080:Cert authenticated	0100:EAP authenticated
0200:Operator assigned		

	IPv6 address	Link-Layer Adr	Interface	vlan	prlvl
ND	FE80::3C99:78CB:3EDC:47F7	AABB.CC01.F500	Et0/0	100	0045
ND	FE80::A8BB:CCFF:FE01:F600	AABB.CC01.F600	Et1/0	100	0005
ND	FE80::A8BB:CCFF:FE01:F700	AABB.CC01.F700	Et2/0	100	0005
ND	FE80::A8BB:CCFF:FE01:F800	AABB.CC01.F800	Et3/0	100	0003
ND	2001:DB8::3008:BC73:6873:F128	AABB.CC01.F500	Et0/0	100	0045
DHC	2001:DB8::F981:4906:29FB:78B5	AABB.CC01.F600	Et1/0	100	0024
S	2001:DB8::1	AABB.CC01.F700	Et2/0	100	0200
ND	2001:DB8::BC10:1361:4712:AC5E	AABB.CC01.F800	Et3/0	100	0003
L	2001:DB8::2	AABB.CC01.F100	SVI100	100	0200

Preference algorithm

B. Define the rules (applied in this order). Updating an entry attribute is:

- 1. Allowed, if no entry exist
- 2. Denied if existing entry is more prefered (with higher preflevel)
- 3. Allowed if existing entry is less prefered (with smaller preflevel)
- 4. Allowed, if received candidate on a trusted port
- 5. Denied if existing entry respond to pool (DAD NS)
- 6. Allowed otherwise

What's next?

- Current document is draft-levy-abegnoli-savi-plbt-02.txt
- One implementation ...
- -01 reviewed/commented by 2 or 3 people
- What to do with this work?
 - o Merge with « a » framework WG document?
 - Make it part of one of the existing WG?
 - Make it a separate WG document?
 - o ?