Multipath TCP Signalling

Costin Raiciu

February 9, 2010

1 Introduction

One design issue for multipath TCP is whether to use TCP options or the payload to signal multipath
control information. This document analyzes the protocol design implications of these two choices,
highlighting plusses and minuses for both approaches. We find that there are no show stoppers either
way, and that both solutions seem “good enough” for deployment.

This document is structured as follows. We begin with a description of the multipath control infor-
mation outlining its characteristics (e.g. size) and requirements (e.g. reliable, in order delivery). Then,
we discuss design issues for both option-based and payload-based signalling. Finally, we provide a succint
summary comparison between the two approaches.

2 Types of Control Information used by Multipath TCP

Multipath TCP connections need to signal control data to function properly. Control data includes
mapping of data sequence numbers to subflow sequence numbers, receive window, policy information,
address information, security information, and so forth.

Data Sequence Mapping. Multipath TCP relies on TCP as a subflow protocol: data from the sender
is split across the existing subflows, where it is packed into segments and sent to the other end. At the
receiver, the subflow part checks sequence numbers, etc., and passes the data up to the multipath layer.
The multipath reorders the data segments and sends them to the application. To be able to do so, the
multipath layer needs to know which data sequence numbers are associated with each packet.

Data sequence mappings include a subflow sequence number (4B), data sequence number (4-8B) and
length (2B), yielding a total length of 10-14B.

Although the mapping could be sent on any subflow and at any time, it seems natural to “tie” the
mapping information to the segment carying the data. The mapping is needed when and if the segment
arrives.

The data sequence mapping will be sent to the other end at the same time segments are sent. The
transmission must be reliable in that, if the segment arrives at the destination the data mapping must
arrive at the destination too, or otherwise the destination does not know what to do with the packet.

Note that delivery of the mapping data must not be reliable in the general sense: every mapping
ever sent does not need to eventually reach the other end. Say subflow 1 sends connection data 1-10 as
segment 101-110, and the path fails before the segment arrives. The data 1-10 will be resent on subflow
2, as segment 201-210. The original mapping (101-110 — > 1-10) could be also resent on subflow 2, but
its pointless to do so: the receiver only needs this information if it ever receives the 101-110 segment
from subflow 1.

Add/Remove Address. In an MPTCP connection one or both subflows have multiple addresses.
After initial subflow establishment, they can use their local addresses to setup additional subflows to the
remote end. This may not work in all cases: for instance, if a server has an additional address it will not
be able to connect to a NATed client.

In such cases, the server’s MPTCP stack uses the “add address” control message to signal the other
end it has an address available. The client can use this address to open a new subflow. The “add address”
has mostly an informational status, and thus it appears to not require reliable delivery. However, there
are cases when failing to signal an additional address may break the entire connection; one such case is
when all the other subflows fail and the additional address could help the connection survive.

The reverse is to announce to the other end an IP address is no longer available, for instance because
the corresponding interface went down. The other end will cleanup the state for subflows terminating
on that interface.

Ordering matters, especially between add and remove messages. Say the server is mobile, gets a new
interface, announces it, and then its old interface dies, and this is announced too. If the two options
are processed in the right order, the connection survives; if they’re processed the other way around the
connection dies.

“Add address messages” contain a list of (id, protocol, address) structures. The id and protocol fields
take 2B in total (12bits id, 4bit protocol), The addresses have 4B for IPv4 and 16B for IPv6, “Remove
address” messages are small, as they only include the address ID.

Data ACK. At first glance, MPTCP can use subflow ACKs and locally saved mapping information
to detect which data has arrived, without needing data ACKs.

However, a flurry of network-based performance enhancing proxies exist, and they actively intervene
in an existing connection. It is possible that such a PEP acks a segment, but the path to the receiver fails
without delivering the segment. The PEP will try to retransmit, but to no avail if the path is still failed.
In the meantime, the sending MPTCP now thinks the associated data was received, yet the receiver will
“close” the receive window waiting for the missing packet. MPTCP is stuck in this case, and cannot
make progress despite having working paths.

To avoid such situations MPTCP includes a data ACK, which is a cumulative ack of data at the
connection layer. As similar TCP ACKs, data ACKs do not need reliable delivery, and it is pointless to
resend lost ACKs.

The data ACK has implications on the send buffer management. If it is not used, subflow acks will
be used to free data from the sender’s buffer. When the data ACK is used, the sender will use it to free
packets from its send buffer. If it used the subflow ACK instead, it could release the segment before the
destination actually received it (see example above).

Data FIN. The data FIN announces to the other end that the multipath connection has ended: no
data will be flowing in that direction after this message. As such, the data fin must receive a data
sequence number, and it must be mapped on a subflow. To make this easier, the data FIN must be sent
on a FIN segment (that occupies sequence space already) so no other data.

Security Information. Multipath TCP may need to transfer security information to protect the
connection from passive or active attackers, This needs reliable signalling, and, in contrast with the
previous data, may be much larger. For instance, public keys typically have 1024-2048 bits (128-256B).

Receive Window. As standard TCP, multipath TCP must provide flow control to pace a sender that
is sending faster than the receiver can consume. The design question is whether to use a connection
receive window only, or a connection level receive window and per subflow receive windows. This choice
affects the way the receive window is signalled. If there is a single connection receive window, it can
just be signalled in each TCP segment on each subflow. If there are also subflow receive windows, the
connection level window must be signalled otherwise.

Multiple receive windows seem to give little benefit (especially since policy information is transmitted
using other options), yet they open the possibility of deadlocks if are not properly coordinated. That is
why it seems better to advertise a single, connection-level receive window.

Subflow Policy/Other stuff. Multipath TCP needs to be able to name flows (combination of address
IDs? what about network multipath?) and provide a preference level for each. Data gets sent only on
the subflows with the highest preference.

3 Using TCP Options for Signalling

TCP options have been the traditional way to evolve TCP. They allow the use of 40B in each TCP
header to signal arbitrary data to the remote end. Some of this space is already used by existing options,
most notably by timestamp option (10B) and SACK (variable length, can use the whole available space).

Option Space Limits. One obvious issue is that the max available space is not big enough for the
security extensions. We will show it is enough for most of the other options.

The data sequence number is necesary on data packets, not on ACKs. As flows are overwhelmingly
asymetric, this means the forward path will carry little SACK information, and MPTCP effectively has
30B available for use. This accomodates all the options by themselves.

For security information, and for other types of information, it must be possible to add data in the
TCP payload. One way to do this is to add a simple “control information” option stating the subflow
sequence number and length of the control data, and embed the data in the payload. Note that this
forces the data to be delivered reliably and in order.

Ensuring Reliability. The other problem is the lack of reliability for options: they can be stripped,
modified or deleted by middleboxes. This is an issue for “Add/Remove address” messages and policy
messages, and needs to be fixed. The obvious way is to add sequence numbers to control messages
information, and to ack this information'. As a small number of these options may be in flight at any
time, it seems 1B is sufficient as a sequence number. Also, because these messages are comparatively
rare, the extra overhead is small.

Data sequence mapping messages do not need extra attention. If the segments also acked at connection
level (i.e. there is a data ACK), we can extract from this an indication that both the segment and the
mapping info was delivered.

If, however, the segment is not acked at connection level but is acked at subflow level, two things
can happen: either the segment got lost after a middlebox crashed, or the segment was delivered but
the mapping information wasn’t (e.g. it was stripped from the headers). In both cases, MPTCP will
retransmit both the segment and the data on another subflow. If a subflow consistently strips options,
MPTCP will end up not using it. In contrast, if a middlebox strips options only on data packets, MPTCP
with payload encoding will be able to use the path.

The data ACK, as regular ACKs, does not need reliable delivery. Losing a few of these packets is not
normally an issue, as the cumulative ACK nicely summarizes the state of the connection.

Security negotiation typically happens at the beginning of the connection, and we can use payload
reliability to ensure reliable, in-order data transmission.

4 Using TCP Payload for Signalling

With this approach, all the data is embedded in the payload of the subflows. Control message size is no
longer a problem - arbitrary size messages can be embedded.

There are two basic ways to alternate both control and data messages in the payload. One is encoding
using type-length-value, and the other is to encode type-value and use escape sequences to mark the end
of control message. This second approach requires a linear scan of the segment at the receiver to find
boundaries, requires escaping the escape sequences in the data, so it will be slower. We will use the first
approach.

Subflow level reliable delivery is provided by default, for all control messages: every control message
will get a sequence number and will be acked by the subflow ACK. The subtlety here is that we have to
retransmit the same control data when it gets lost; we cannot update it, if we want to transmit more
urgent data. This is because traffic normalization mandates that the same payload should be delivered
for the same sequence number; hence, traffic normalizers cache the payload and will retransmit the
cached data when they receive segments with cached sequence numbers. For the sender this means that
if it replaces the payload on retransmitted packets and gets an ack for the data, it cannot be sure if the
old or the new payload was received.

There is one particular control message that prefers timely delivery to reliability: data ACK. TCP
ACKs are sent as side-effects of segments arriving at the receiver, an provide an ack-clock that allows
the sender to safely send new segments in the network. The ACK stream is unreliable, and it is not
congestion controlled. When ACK packets are lost, TCP recovers by the cumulative nature of ACKs;
later ACKs will include strictly more information than the ones that were lost, so there is no need to
retransmit.

With payload encoding, however, data ACKs are sent as regular payload: reliably, in order and are
congestion controlled. If they are lost, they will be unnecesarily retransmitted despite the fact that newer
ACKs might supersede them. Optimizations are possible here to override the ACK with the most recent

1 Another way is to just echo the option once received. This works alright as long as there is a single option in flight.

one. In the worst case, this can result in timeouts at the sender, or unnecesary fast retransmits. It is
unclear how bad this effect is.

If the reverse path has high loss rates the data ACKs will be throttled by the congestion window.
This raises an interesting question: when do we send data ACKs? One way would be to piggyback on
regular ACKs, but this would mean we would end up throttling the regular ACK stream. This, in effect,
may make multipath subflows lose to NewReno subflows when the reverse path is lossy.

Thus, it seems data ACKs must be sent independently of subflow ACKs, or using a subset of subflow
ACKs. The first option increases overall overhead, so the second option seems more appropriate.

Future Middleboxes. Payload encoding is likely to go through most middleboxes because it perfectly
“hides” the multipath connection inside what looks like a regular TCP flow. This is good for getting
through current middleboxes, but what does this mean for the future generation of middleboxes?
Multipath aware middleboxes will likely soon appear, and will try to optimize different aspects of
multipath transmission. Because most of the control data is now in the payload, these middleboxes
will have to parse the payload to find the control information. To cope with segmentation, they might
hold state across TCP segments just to know where to start parsing (e.g. know where the next control
information starts). Finally, if a middlebox sees packets of an ongoing subflow without seeing the SYN
exchange (maybe because it rebooted, or the subflow was rerouted, or the middlebox does not maintain
per connection information) it has no way of finding out those packets belongs to a multipath connection.

Ordering. Global ordering is not provided by default; for control messages that need global ordering,
sequence numbers will need to be added inside the control message. Following the same reasoning as with
data ACKs, it may be necesary to provide a connection level ACK for these control messages: otherwise,
the ACK at subflow level can be misleading in showing that the message was received. Note that this is
not a problem for data sequence mapping messages.

The data sequence mapping can be made 4B shorter if we use payload encoding, as the subflow
sequence number does not have to be stated explicitly.

Implementation. Payload encoding seems to raise issues for the stack implementers. Typically, op-
tions were processed first to provide control data, then the payload was placed in the reorder/receive
buffer. Now, the processing involves parsing the payload itself in two different ways, depending on which
type of data arrived.

We observe, though, that this new type of processing needs to take place at connection level only,
in the multipath subflow; at subflow level, processing remains unchanged. At the least, implementing
multipath means implementing the connection level part of it, and reusing the existing TCP code for
subflows.

As a matter of fact, it is simpler to “signal” the control options from the subflow to the connection
layer if the payload is used to encode control messages, otherwise the stack will have to parse MPTCP-
related options at subflow level and somehow transmit them to connection level. The same applies for
transmitting control messages: the connection level must somehow instruct the subflow level to encode
these control messages as options.

5 Comparison

Here we list all known differences between the two approaches, to facilitate a comparison.

Topic

Options

Payload

MPTCP Capable

must use options

must use options

Token

must use options

must use options

Data Sequence Map-
ping

Size

Reliability

10-14B

Uses Data ACK to infer reception of
mapping and of segment. Assumes
paths that strip options on data seg-
ments are failed, and will stop using
them.

6-8B

Still needs to use data ACK to guard
against failure of end-to-end subflow
ACKs.

Data ACK

send as and shares fate of regular
ACKs

data ACKs get resent until they are
received. It will be space inneficient,
especially if there is a high loss rate
on the return path. Because of de-
layed acks, there may be quite a few
RTOs on the return path. Optimiza-
tions are needed here to reduce the
amount of useless data sent. We may
also be constrained by the congestion
window on the return path; if we in-
clude the data ACK in every ACK
we will lose out to regular TCP.

Add/Remove IP

need to add sequence numbers and
ACKs

need to add sequence numbers and
ACKs

Add IP

can be sent on SYN

must be sent on subsequent packets

Subflow Priority

needs ordering and ACKs, as above

needs ordering and ACKs, as above

Security Negotiation

Too big to fit in options: must resort
to payload encoding; can use option
to indicate where the control data is

Can be done naturally.

Data FIN No problem to do this with options, | Must include new type of mapping
uses 1B of data space - the byte oc- | for Data FIN that occupies 1B of
cupied by the subflow FIN payload.

Option Space Limita- | Currently a problem for security ne- | no issue

tions

gotiation, everything else fits OK

Existing Middle-
boxes

Proactive ACKing
Stripping options on
SYN

Stripping options on
data segments

must use data ACK

will not use path for secondary sub-
flows, and will revert to TCP if first
subflow

will not use path

must use data ACK

will not use path for secondary sub-
flows, and will revert to TCP if first
subflow

will use path

Multipath Middle-
boxes

Stateless can infer multipath and see flow of | cannot distinguish between multi-
data path and regular TCP

Stateful can infer multipath, etc can infer multipath if they see SYN
handshake. If flows are rerouted, or
middleboxes fail - can’t distinguish
from regular TCP.

Implementation

Data send Must set data sequence mapping | The connection level code simply em-

Data receive

Other options

option on outgoing packets, reduce
MSS, cut SACK if necessary

Must signal data sequence map-
ping to connection level; possibly by
swapping the sequence numbers in
the segment after it is “in order” at
subflow level.

same story as above; must be en-
coded on send as options (i.e. change
subflow stack), must be signalled on
receive (i.e. change subflow stack)

beds the mapping in the payload and
sends the segment to the subflow
Just passes payload to the connec-
tion level, which parses it to figure
out what’s needed. It needs to re-
move the control stuff from the seg-
ment before passing it up to the ap-
plication.

subflow stack unchanged, connection
stack more complicated.

