
WebSocket Requirements
(draft-loreto-hybi-requirements-01)

HyBi WG, IETF-77
March 24, 2010

Salvatore Loreto

Overview
The goal of HyBi wg is to provide an efficient / clean two-

way communication channel
between client and server

The communication channel will:
Allow each side to, independently from the other,
send data when is willing and ready to do it

Rely on a single TCP connection for traffic on both
the directions

Reduce the high overhead produced by HTTP
headers in each request/response

Req.: Internationalization

Do we need a requirement on intern.?

Req. 4: Textual data MUST be encoded as UTF-8

The specifications must include internationalization
consideration even if it is not part of the req.

Req.: Transport Protocol

Req. 1: The WebSocket Protocols MUST run
 directly on top of a transport protocol
 (e.g. TCP, UDP, SCTP or DCCP)

Req.: Data Management

Message: a block of related data with identified
 boundaries

Req. 2: The WebSocket Protocols MUST be
 able to handle (send and receive)
 message on top of a TCP data stream.

Req. 3: It MUST be possible to send a message
 when the total size is either unknown or
 exceeds a fixed buffer size.

Req.: Handshake

Req. 9: The WebSocket Client MUST be able to set
 up a communication channel sending to a
 WebSocket Server a well defined handshake.

Req. 14: The WebSocket Server that accept to set
 up, with a WebSocket Client, a communication
 channel MUST send back to the WebSocket
 Client a well defined handshake.

Req.: HTTP – WebSocket

Req. 3: The WebSocket protocol MUST allow
 HTTP and WebSocket connections to be
 served from the same port. Consideration
 MUST be given:

to provide WebSocket services via modules that
plug in to existing web infrastructure.

to making it possible and practical to implement
standalone implementations of the protocol
without requiring a fully conforming HTTP
implementation.

Req.: HTTP – WebSocket

Req. 7: When sharing host and "well known" port
 with HTTP, the WebSocket protocol MUST
 be HTTP compatible until both ends have
 established the WebSocket protocol.

Req. 8: The protocol SHOULD make it possible and
 practical to reuse existing HTTP components
 where appropriate.

Req.: WebSocket close

Req. 10: WebSocket Protocol MUST provide for
 Graceful close of an active WebSocket
 connection on request from the user
 Application.

Open Issue: do we need also a requirement for
 Ungraceful close ?

WebSocket extensions: where?

Some really should remain in Javascript.

Some are *better* if done by the browser, but it is still
good to have the ability to fall back to Javascript on an
older browser.
(e.g. Multiplexing connections from a single tab/window)

Some cannot be done from Javascript at all.
(e.g. Opportunistically multiplexing connections from all
tabs/windows to the same destinations - or proxy if there
is one)

WebSocket extensions: how?

Req.: WebSocket sub-protocol

Req. 11: The WebSocket Client MUST be able to
 request the server, during the handshake,
 to use a specific WebSocket sub-protocol.

Req.: Security

Req.17 The WebSocket Protocol MUST use the
 Origin-based security model commonly used
 by Web browsers to restrict which Web pages
 can contact a WebSocket sever when the
 WebSocket protocol is used from a Web page.

Req.18 When used directly (not from a Web page),
 the WebSocket Protocol MUST use an
 equivalent security model.

Req.: Security

Req.19 WebSocket should be designed to be robust
 against cross-protocol attacks.
 The protocol design should consider and
 mitigate the risk presented by WebSocket
 clients to existing servers (including HTTP
 servers).
 It should also consider and mitigate the risk to
 WebSocket servers presented by clients for
 other protocols (including HTTP).

References

“Best Practices for the Use of Long Polling and
Streaming in Bidirectional HTTP”
http://www.ietf.org/id/draft-loreto-http-bidirectional-02.txt

“The WebSocket protocol”
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol

“The WebSocket API”
http://dev.w3.org/html5/websockets/

http://www.ietf.org/id/draft-loreto-http-bidirectional-02.txt
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

