CE CE Strawman discussion

Kentaro Ogawa

Focus: Fr Plane

CE1 Fr CEn

1
D

FEM Ff FE1 Fi FEn

Desires

 KISS principle whenever possible

* Not very ambitious on CE set

- 1 Active and N backup CEs at a time
« As defined in protocol document section 8

« Avoid changes to ForCES architecture

- Unchanged protocol
« Use existing protocol constructs such as transactions
- Unchanged model

« Any CE configuration/state to be held in an LFB
- Define a CE Object LFB if needed

What happens of CECE plane?

« Updates of NE state and config to backup CEs
from master CE

 Fault detection by backup CEs in case master
CE goes down

 Election to select new master CE

CE Object LFB

« Store operational config and state of Fr plane

e The NE CE set, for each CE

- What type (eg master/slave)
- Status (connected etc)
e Connectivity parameters

- Dead intervals etc
- Do we need a CE Protocol Object LFB for this?

Operational Approach

« Each CE on bootup knows the NE CE set
« Each backup CE associates to listed master CE

» Master CE updates backup CEs with config

CE set discovery alternatives

e Simple approach
 Retrieve the CE state and types from CEM interface

- Very static CE list (including initial master)

« Slightly complex approach

« Bootstrap as in simple approach above

 Allow master CE to update CE Object of backup CEs
with any other CEs it knows of

- Backup CE connects to master CE

« Preference is for simple approach for now

FE participation

« Defined in protocol draft section 8
« Fault detection and recovery

« We have a set of CEs to which an FE connects
« An FE associates to all CEs

« Slightly different from what is defined in section 8

« An FE is dumb
* |t responds to any CE that requests it to do anything

« Events and redirects are sent to only listed Master CE
 Alternate: send to CEID ALLCES

CE master election

* Very simple and static
 The lowest CEID wins
e |f master CE dies

e All CEs associate to the next lowest CEID

- Easy since the static list never changes

Challenges on CECE

« Master CE update/sync of backup CE
* Async vs sync updates

* Protocol referencing affected LFB component to
backup CEs

« Which CE associates to what CE?
 Avoiding split brain

Challenge: CE update sync

All FEs Master CE Backup CEs
<——config———
———stecess >
—Update config—
-
All FEs Master CE Backup CEs

—Update config: phase®™ Advantage:
<« Please goahead — ~ Nno update to FE if backup CEs cant take over

--> Use PL transactional operations

< config Disadvantage:

———stccess > * more messages exchanged per config

Challenges: Referencing update
component

« FE-w/LFB-x/instance-y/component path-z is
unique NE-wide

 Direction is from CEID
* Therefore, config operation applies to hierachy:

- FE-w/LFB-x/instance-y/component path-z

* No clean message to CEn from CE1 “this is a
config set on FE-w/LFB-x/instance-y/component
path-z”

» Hierachy in message header is between two points

Solutions: Referencing update
component
« CEs keep a translation table for re-mapping

* FE-w/LFB-x/instance-y/component path-z to
something they negotiate and store in CEObject

« So then message from CE1 -> CEn translates

- Dst = FE-w/LFB-x/instance-y/component path-z
- to: dst = CEn/LFB-x/instance-y /component path-z

 Limits use of LFB instances
« Adds complexity of maintaining a map

Solutions: Referencing update
component

« Use multicast IDs to map the FE to which it
applies to
« Update message to CE is sent to multicast address +
FEID
- Eg FEID 1 becomes 0xC000001
« Limits the total number of FEs in an NE to about 2430
- 16
- 16 less than what we specify as upper bound

 Limits the use of multicast ID space in case needed
for other things

Solutions: Referencing update
component

 Introduce a new TLV at the same hierachy level
as LFB selector

« Call it “applies to” it will encompass the FEID on
which update happens

- Message now is from CEIDx to CEIDy “applies to” FEIDz
on LFB-a/instance-b/path-c

* This seems to be the cleanest solution but requires
a small change to add a new TLV

CECE association

« Simple approach is that each CE associates to
the known master

« Avoids too many connections

« Upon failure of known master, election process
IS simple
e Connect to next lowest CEID
* Optimize

- Master CE always updates the CEODbject Ces table of all
backup Ces with connection status of each CE

CE master split brain

e |f master CE dies

 All CEs associate to the next lowest CEID
- Repeat until success

« Possible that some CEs may only be able to
connect to others

- We need to make sure we survive in such a scenario

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

