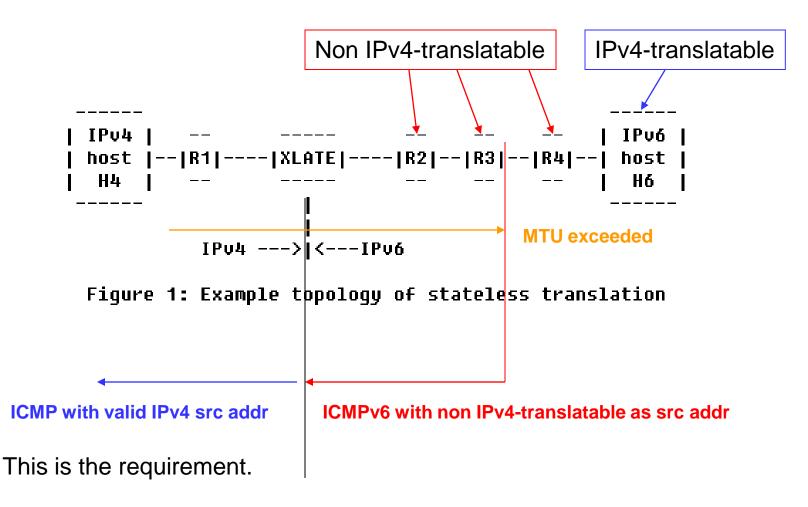
Stateless Source Address Mapping Algorithm for ICMPv6 Packets

X. Li, C. Bao, D. Wing, R. Vaithianathan 2010-03-25


Outline

- Problem Statement
- Analysis of the Possible Approaches
- Stateless Source Address Mapping Algorithms for ICMPv6 Packets
- Recommendations

"A future work" in xlate

- IP/ICMP Translation Algorithm draft-ietf-behave-v6v4-xlate-11
 - 4.3. Translating ICMPv6 Error Messages into ICMPv4
 -
 - Note that the IPv6 addresses in the IPv6 header may not be IPv4-translatable addresses and there will be no corresponding IPv4 addresses. In this case, the translator can do stateful translation. A mechanism by which the translator can instead do stateless translation is left for future work.

Problem statement

Analysis of the Current Approaches

- Configure IPv6 Routers Using IPv4-translatable Addresses
 - Use Public IPv4 Addresses
 - Use RFC1918 Addresses
- Perform Stateful Source Address Mapping for ICMPv6 Packets
 - Use Public IPv4 Addresses
 - Use RFC1918 Addresses
- Use Translator's Interface Address to Represent Source Address for ICMPv6 Packets

Comparisons

- Configuring IPv6 routers using IPv4-translatable addresses
 - Renumbering of all the IPv6 interface addresses in all routers.
 - If public IPv4 address is used, it is a waste of the resource
 - If the IPv6 routers forward packets from multiple translators with different prefixes, there is no way to achieve this.
- Performing stateful source address mapping for ICMPv6 Packets
 - For stateless-only translator, not worth the cost.
- Using translator's interface address to represent source address for ICMPv6 Packets
 - Different non IPv4-translatable addresses will be mapped to same IPv4 address. (routing loop?)

Stateless Source Address Mapping Algorithms for ICMPv6 Packets

- Not to be dropped by IPv4 routers due to failure of security checks such as uRPF checks.
- Content in the ICMP message is more important than who generating the content.
- Public IPv4 addresses SHOULD NOT be wasted.
- Identify this special translation for everybody.
- Different non IPv4-translatable IPv6 addresses have different IPv4 address representations for a specific application (traceroute).

Choosing an IPv4 /24 Address Block

Use Public IPv4 Addresses

- Waste public IPv4
- Can only be identified by admin
- Use RFC1918 Addresses
 - May cause confusion
 - Can only be identified by admin
- Ask IANA for allocating an IPv4 Well-Known Prefix

Design an Algorithm to Generate the Last Octet of IPv4 /24

Randomly Generate the Last Octet

0	8	16	24	32
Prefix			+ Random +	

Copy Hop Count into Last Octet

0	8	16	24	32
Prefix			Hop Count	

 Hashing of the IPv6 address to generate Last Octet

0	8	16	24	32
Prefix			-+ Hashing +	

Discussions

- Randomly Generate the Last Octet
 - Easy, may have collision, or need to have some states
- Copy Hop Count into Last Octet
 - Almost unique, stateless, identify the hop count.
- Hashing of the IPv6 address to generate Last Octet
 - Almost unique based on the efficiency of the hashing algorithm, fast, stateless.

Recommendations

- Asking IANA for an IPv4 /24 as a "Well-Known Prefix"
- Last /24 is configurable
 - Random
 - Hop Count
 - Hashing