
2010-03-22 ALTO/IETF77 1

ALTO Protocol

draft-ietf-alto-protocol-03

Richard Alimi (Ed.), Reinaldo Penno (Ed.), Stefano Previdi,
Stanislav Shalunov, Richard Woundy, Y. Richard Yang (Ed.)

Grateful to contributions from large number of collaborators;
see draft for complete list.

2010-03-22 ALTO/IETF77 2

Outline

Protocol Structure overview

Protocol Encoding (new since IETF76)

Focus on major discussion points

Discuss specifics (e.g., particular parameters) if time permits

Discussion

2010-03-22 ALTO/IETF77 3

Basic Concepts (quick refresher)

Network Locations

Individual Endpoints

PIDs for aggregation (privacy and scalability)

Network Map

Mapping between Endpoints and PIDs

Cost Map

Costs between Network Locations

Server may define multiple types of costs

2010-03-22 ALTO/IETF77 4

Protocol Structure

ALTO Service

Server
Capability

Map Service

Network Map Cost Map

Map Filtering
Service

Endpoint Property
Service

Ranking
Service

REQUIRED
KEY:

Endpoint Cost
Service

OPTIONAL

2010-03-22 ALTO/IETF77 5

Protocol Encoding: Approach

Goals

Ease integration

Existing infrastructure (e.g., HTTP caches)

Many P2P apps already have an HTTP client

Text-encoding to ease protocol understanding/debugging

Design Choices

RESTful interface over HTTP

JSON encoding for message bodies

2010-03-22 ALTO/IETF77 6

ALTO Request Syntax

Follow “standard” REST-ful design

Approach for Input Parameters

Use Query String where possible and appropriate (permits caching)

Use Body when size of input parameters can be large or requires some
structure

<Method> <URI-Path>?<URI-Query-String> HTTP/1.1
...

<Body>

Type of information requested
[HTTP Method, URI-Path] Simple input parameters

[HTTP Query String]

Input parameters requiring structure
or arbitrary length

[JSON Object with Request-specific fields]

2010-03-22 ALTO/IETF77 7

ALTO Response Syntax

Currently use normal HTTP Status codes

List discussion suggesting to (cleanly) separate application-layer status

Body designed to be self-contained JSON Object

Metadata needed to interpret ALTO information stored inside body

Simplify persistence and redistribution

HTTP/1.1 <Status> <StatusMsg>
...

{
 "meta" : <RspMetaData>,
 "type" : <JSONString>,
 "data" : <JSONObject>
}

Success/Error
[HTTP Status Code]

“Header” information (e.g., version)
[JSON Object with Response-independent fields]

Identifier for type of info to follow

ALTO Information
[JSON Object with Response-dependent fields]

2010-03-22 ALTO/IETF77 8

Protocol Versioning Approach

Many REST-ful designs encode version in URI

Implications for Server discovery protocol, load balancing (L7 switches)

Current approach

(Logical) ALTO Server implements a single protocol version

Demultiplexed by hostname (may use virtual hosting)

ALTO Client bootstraps from any ALTO Server managed by provider

Utilize Server Capability service (will see later...)

GET <URI-Path> HTTP/1.1
Host: alto-v1.example.com:6671

alto-v1.example.com
Logical ALTO Server (vhost)

alto-v2.example.com
Logical ALTO Server (vhost)Physical

ALTO Server

Example Deployment:

2010-03-22 ALTO/IETF77 9

Services and Operations Overview

Service

Server Capability

Operation Method and URI-Path

Map

Map Filtering

Endpoint Property

Endpoint Cost

Lookup

Get Network Map

Get Cost Map

Get Network Map

Get Cost Map

Lookup

Lookup

GET /capability

GET /map/core/pid/net

GET /map/core/pid/cost

GET /map/filter/pid/net

GET /map/filter/pid/cost

GET /endpoint/prop/<name>

POST /endpoint/prop/lookup

POST /endpoint/cost/lookup

2010-03-22 ALTO/IETF77 10

Server Capability
ALTO Service

Server
Capability

Map Service

Map
Filtering
Service

Endpoint
Prop.

Service

Ranking
Service

Purpose

Discovery of alternate ALTO
Servers (likely same
administrative domain)

Versions, supported services,
supported cost types

Info local to server itself

Discussion

Separate query for discovery of
alternate servers?

How much (if any) config
information in discovery
(“server_list”)?

Registry for cost types?

GET /capability HTTP/1.1
...

HTTP/1.1 200 OK
...

{ "meta" : ...,
 "type" : "capability",
 "data" : {
 "server_list" : [{
 "uri": "http://alto.example.com:6671",
 "version" : 1,
 "services" : ["map",
 "map-filtering"],
 "cost_types": [...],
 ...
 }],
 "self" : {
 “certificate” : “...”
 }
}

http://alto.example.com:6671/

2010-03-22 ALTO/IETF77 11

Changes to Remaining Services

Renamed “Ranking Service” to “Endpoint Cost Service”

More accurate characterization of capabilities

Map, Map Filtering, Endpoint Property, and Endpoint Cost Services

Changes since IETF76 pertain to encoding

Focus today's discussion on more general issues

… unless specific comments/feedback/questions from WG?

2010-03-22 ALTO/IETF77 12

Redistribution

Basic Idea (more in later presentation...)

Allow ALTO Clients to distribute ALTO Information to each other

Unit of redistribution is an ALTO Response Body

ALTO Clients should be able to verify authenticity of received info

Requirements

ALTO Responses must identify any input parameters

Allows ALTO Client to identify context of received info

Digitally-signed ALTO Responses (by ALTO Server's private key)

ALTO Client can verify that response generated by particular ALTO Server

ALTO Client must be able to retrieve ALTO Server's public key

Should only need to be done infrequently

2010-03-22 ALTO/IETF77 13

Redistribution

ALTO Server MAY mark cachable responses as redistributable

Echo Operation and Input Parameters

In “redistribution” section
of metadata

Digital signature of
response body

In HTTP Headers/Trailers

ALTO Server must
provide public key

X.509 cert in Server
Capability response

Discussion

Explicit distribution scope?

Technique other than “X-ALTO-” HTTP headers?

HTTP/1.1 200 OK
...
X-ALTO-HashAlgorithm: ...
X-ALTO-SignatureAlgorithm: ...
X-ALTO-SignatureDigest: ...

{ "meta" : {
 “version” : 1,
 “redistribution” : {
 “server” : “alto.example.com:6671”,
 “request_uri” : “http://...”,
 “request_body” : { ... },
 “expires” : “2010-03-12T23:20:50.52Z”
 }
 },
 "type" : ...,
 "data" : ...
}

2010-03-22 ALTO/IETF77 14

IPv4 / IPv6

Need to define semantics for multiple types of Endpoint IDs

Semantics applied to IPv4 and IPv6 is of immediate concern

Do we want to generalize to other endpoint identifiers?

Discussion

Dual-stack hosts: can Network Provider indicate a preference?
If so, at what granularity?

Global?

Example: “Always use v6 if available”

Cleanest approach may be separate maps each with a preference value

Destination Network Location?

Example: “Prefer v6 for Resource Providers in ISP A, but not for those in ISP B”

Possibility is a per-PID attribute indicating preference for v4 or v6

Other considerations?

2010-03-22 ALTO/IETF77 15

Discussion

Any other comments or feedback?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

