

# Tracker vs. DHT Performance Comparison for P2P Streaming

draft-hu-ppsp-tracker-dht-performance-comparison

Yan Hu, NEC Labs China Yong Xia, NEC Labs China Jan Seedorf, NEC Labs Europe



#### Introduction

- Resource discovery performance comparison
- Chunk discovery performance comparison
- Conclusion

#### Introduction

- Different methods for a peer to discover specific resource
  - Tracker-based method: centralized server peer reports its resources to tracker; tracker stores and returns resources info to the requesting peer
  - DHT-based method: fully-distributed lookup resources info is stored by many peers in the P2P network
- This draft estimates the performance of the two methods
  - Assume there are D resources shared by N peers in a P2P system
  - For P2P streaming
    - N: number of active users in a P2P streaming software about 10 million (10<sup>7</sup>) active users
    - D: number of channels (live streaming) or videos (VoD) about 100 thousand (10<sup>5</sup>) resources

#### **Resource discovery**

- Two performance comparisons
  - Resource discovery: coarse level only compare the discovery performance of resource info
  - Chunk discovery: grain level

also compare the discovery performance of chunk info

- Resource discovery performance comparison
  - Tracker-based method:

tracker stores and returns resource info, chunk info is exchanged using peer gossip

DHT-based method:

resource info is obtained using DHT method, chunk info is exchanged using peer gossip

(Assumption: DHT nodes are widely distributed on the Internet)

### **Lookup efficiency**

- Parameters and assumptions
  - N: number of peers, N = 10,000,000
  - D: number of resources, D = 100,000
  - RTT: average RTT in the network, RTT = 200ms
- Lookup efficiency comparison

|                   | Tracker-based    | DHT-based            |
|-------------------|------------------|----------------------|
| Lookup message    | O(1)             | $O(\log(N)) = 23$    |
| Lookup operations | O(1)             | $\log(N)*O(1) = 23$  |
| Lookup latency    | O(1)*RTT = 200ms | O(log(N))*RTT = 4.6s |

#### Summary:

Tracker-based method is much faster than DHT-based method, the 4.6s lookup latency is relatively high in P2P streaming applications.

#### **Network traffic**

- Parameters and assumptions
  - N: number of peers, N = 10,000,000
  - T: each peer requests new resource every T seconds, T = 60sec
  - S: average size of one request/response message, S = 1KBytes

Network traffic comparison

|                                       | Tracker-based        | DHT-based                       |
|---------------------------------------|----------------------|---------------------------------|
| Number of messages per second         | N/T*2 = 3.3*100,000  | N/T*2*log(N) =<br>7.7*1,000,000 |
| Size of messages per second           | N/T*2*S = 0.33GBytes | N/T*2*log(N) *S = 7.7GBytes     |
| Number of messages in node join/leave | O(1)                 | $O((logN)^2) = 541$             |

#### Summary:

Tracker-based method has smaller network traffic overhead than DHT-based method, both methods are acceptable in P2P streaming applications.

### **Host requirement**

- Parameters and assumptions
  - T: each peer requests new resource every T seconds, T = 60sec
  - S: average size of one request/response message, S = 1KBytes
  - C: one peer has C resources, C = 10
  - P: each peer is represented by P Bytes, P = 20 Bytes
- Host requirement comparison

|                                           | Tracker-based        | DHT-based                 |
|-------------------------------------------|----------------------|---------------------------|
| Memory requirement                        | N*C*P = 2GBytes      | (N*C/D)*P = 20KBytes      |
| Number of requests received per sec       | N/T = 1.67*100,000   | log(N)/T = 0.4            |
| Size of request/response messages per sec | N/T*2*S = 0.33GBytes | 2*log(N)/T*S = 0.8 Kbytes |

#### Summary:

DHT-based has much less host resources requirement than tracker-based method. For performance considerations, multiple trackers can be used.

### **Chunk discovery**

- Two performance comparisons
  - Resource discovery: coarse level only compare the discovery performance of resource info
  - Chunk discovery: grain level

also compare the discovery performance of chunk info

- Chunk discovery performance comparison
  - Tracker-based method:

tracker stores and returns resource info, chunk info is exchanged using peer gossip

DHT-based method:

both resource info and chunk info are obtained using DHT method (i.e., the first solution in "Chunk Discovery for P2P Streaming")

### **Lookup efficiency**

- Parameters and assumptions
  - N: number of peers, N = 10,000,000
  - D: number of resources, D = 100,000
  - RTT: average RTT in the network, RTT = 200ms
  - M: each peer gossip with M neighbors, M = 20
- Lookup efficiency comparison

|                   | Tracker-based    |                  | DUT based               |
|-------------------|------------------|------------------|-------------------------|
|                   | Tracker side     | Peer side        | DHI-based               |
| Lookup message    | O(1)             | M*O(1) = 20      | O(log(N)) = 23          |
| Lookup operations | O(1)             | O(1)             | $\log(N)*O(1) = 23$     |
| Lookup latency    | O(1)*RTT = 200ms | O(1)*RTT = 200ms | $O(\log(N))*RTT = 4.6s$ |

#### Summary:

Tracker-based method is much faster than DHT-based method, the 4.6s lookup latency is relatively high in P2P streaming applications.

#### **Network traffic**

- Parameters and assumptions
  - T: each peer requests new resource every T seconds, T = 60sec
  - S: average size of one request/response message, S = 1KBytes
  - I: peer sends gossip messages every I seconds, I = 10 sec
  - R: video rate, R = 32 KBytes/sec; Z: chunk size, Z = 16 KBytes
- Network traffic comparison

|                          | Tracker-based |              |                     |
|--------------------------|---------------|--------------|---------------------|
|                          | Tracker side  | Peer side    | DHT-based           |
| Number of                | N/T*2 =       | M*N/I*2 =    | N*(R/Z)*2log(N) =   |
| messages per sec         | 3.3*100,000   | 4*10,000,000 | 1,000,000,000       |
| Size of messages per sec | N/T*2*S =     | M*N/I*2*S =  | N*(R/Z)*2log(N)*S = |
|                          | 0.33GBytes    | 40GBytes     | 1TBytes             |

#### Summary:

Tracker-based method has smaller network traffic overhead than DHT-based method, both methods are acceptable in P2P streaming applications.

### **Host requirement**

- Parameters and assumptions
  - C: one peer has C resources, C = 10
  - P: each peer is represented by P Bytes, P = 20 Bytes
  - Bm: bitmap size, Bm = 1KBytes
  - H: number of chunks in one resource, H = 10000
- Host requirement comparison

|                                      | Tracker-based           |                   |                                 |
|--------------------------------------|-------------------------|-------------------|---------------------------------|
|                                      | Tracker side            | Peer side         | DHT-based                       |
| Memory<br>requirement                | N*C*P = 2GBytes         | M*Bm = 20KBytes   | (N*C/D)*P*(D*H/N) =<br>2MBytes  |
| Number of requests received per sec  | N/T = 1.67*100,000      | M/I = 2           | (R/Z)*log(N) = 46               |
| Size of req/resp<br>messages per sec | N/T*2*S =<br>0.33GBytes | M/I*2*S = 4KBytes | (R/Z) *log(N)*2*S= 92<br>Kbytes |

#### Summary:

DHT-based has much less host resources requirement than tracker-based method. For performance considerations, multiple trackers can be used.



### Conclusion

- This draft compares resource discovery and chunk discovery performance of Tracker-based and DHT-based method
- Tracker-based method has much short response time than DHT-based method
- DHT-based method's response time can be long, not suitable for delay sensitive streaming applications
- Per-host requirement of tracker is higher than DHT nodes, but still within reach of a small number of commodity PCs.

## **Thanks!**

