

Go further, faster™

NFSv4 Multi-Domain Access

Andy Adamson andros@netapp.com IETF 76 NFSv4 Working Group

- Motivation
- NFSv4 Authorization Context
- NFSv4 ACL Name
- Name resolution
- LDAP extension
- LDAP Caching Proxy Example
- What's next

- The NFSv4 draft addresses all of the pieces of NFSv4 administration each with many options. Stand alone NFSv4 sites choose which options serve their needs.
- Joining NFSv4 servers which can use separate name translation and security services into a multi-domain name space such as the federated file system requires coordination of services.
- NFSv4 deals with two kinds of identities: authentication identities (principals) and authorization identities (users and groups of users). NFSv4 servers must perform two kinds of mapping:
 - Authentication identity <-> Authorization Context
 - On the wire authorization identity <-> On disk authorization identity
- Draft-adamson-nfsv4-multi-domain-access addresses both kinds of mappings describing possible implementation strategies, and specifies a name service for interoperation in a global namespace.

Local Representation of Multiple domains

- Domain: A group of users and computers administered by a single entity, and identified by a DNS domain name.
- Multiple domain access starts at the file server where local ID representation needs to distinguish between local and remote domains.
 - Most installations assign numeric, local identifiers to users and groups using a namespace local to their domain
- A range of suggested solutions for multiple domain representation on disk are presented
 - Large ID: Can express multiple domains on disk using domain-local ID plus a domain ID (Windows SID)
 - Small ID (32-bit POSIX): No room for a domain identifier
- Name resolution (ID <-> name@domain) is required
 - May be less work for Large ID

Multiple Domain and Security Services

- AUTH_NONE can be useful to the multi-domain NFSv4 name space to grant universal access to public data.
- AUTH_SYS uses a host-based authentication model and places the UID and GIDs in the RPC credential and so can only be used in a name space that shares a name translation service.
 - UID/GID collisions occur with multiple name translation services
 - RPCSEC_GSSv3 draft has a modernized replacement for AUTH_SYS
- The NFSv4 mandated RPCSEC_GSS with the Kerberos security mechanism is the only current choice for multi-domain use.
 - X.509-based security mechanisms can also be used. (PKU2U)

NFSv4 Authorization Context

- The NFSv4 server must map the RPCSEC_GSS client principal name (or the GSS security context) to local security information including a domain-local ID, a set of domain-local group IDs and perhaps other user privileges.
- With just using a name service, this means:
 - Contact remote name service over a secure connection to map:
 - RPCSEC_GSS client principal <-> name@domain
 - Obtain a list of group@domain of the group's the user belongs
 - The remote domain name service is the authoritative service for these translations
 - The name@domain and list of group@domain are then mapped to local IDs using the local domain name service or other local means.
- We call this security information an *authorization context* (called an access token in some systems).

NFSv4 Authorization Context

- We define NFSv4 authorization context with the following fields using the GSS-API Naming Extensions name attribute format.
 - draft-ietf-kitten-gssapi-naming-exts
- UserID: principal's global ID and/or local ID mapping, and the name@domain form.
- PrimaryGroupID: global ID and/or local ID mapping for the principal's primary group, and the name@domain form.
- Groups: an array of group IDs for the groups that the user is a member of, in global ID and/or local ID form, and in name@domain form
- YTD field(s)
 - privileges and authorizations granted to the principal
 - Multi-level security label range/set
 - Implementation specific items

NFSv4 Authorization Context Determination

- The NFSv4 access token SHOULD be obtained via the per GSS-API mechanism naming extension named attribute interface.
 - There is an MIT Kerberos implementation under development.
- If the GSS-API attribute interface is not available:
 - Obtain the access token information from the authenticating credentials of the principal
 - Kerberos PAC
 - Map the RPCSEC_GSS client principal to a local user account, and then lookup that user's account access token information from the user's domain name services.
 - See LDAP Extension Example

- NFSv4 owner, owner_group, acl, dacl and sacl attributes represent a file object's authorization metadata. The NFSv4 owner, owner_group and ACE 'who' field we call the NFSv4 ACL name.
- The on-the-wire name@domain form of the NFSv4 ACL name for users and groups gives a level of indirection that allows a client and server to translate their local ID representation to a common syntax.
- Multi-domain capable sites need to meet these requirements in order to ensure clients and servers can map name@domain to internal representations reliably:
 - name@domain MUST be unique within the DNS domain
 - Every local representation of a user and a group MUST have a name@domain, and it MUST be possible to return the name@domain for any identity stored on disk, at least when required infrastructure such as name services are on line.

Multiple Domain Name Resolution

- A domain's name service is authoritative for:
 - Join/Leave/Rename (validity of name@domain)
 - Authorization Context Information mappings
- Multiple domain capable sites therefore need to do name service lookups in various domains
 - Remote services may not always be available
- Site administrators may wish to maintain local caches of key attributes (e.g. a caching proxy).
 - This is recommended
- Domains in a federated namespace may provide each other with LDAP LDIF delta feeds to maintain cached LDAP contents up to date.

Multiple Domain Name Resolution

- To support multiple domain name resolution, implementations are REQUIRED to support the use of LDAP with the RFC2307 schema as a name service.
 - To support authorization context information lookup
 - Other schemas are allowed
- Each Domain (local and remote) has a corresponding base DN as follows
 - Strip the trailing dot (.), replace all dots with ",DC=", prepend "DC="to the resulting string
 - foo.bar.example.com becomes
 DC=foo,DC=bar,DC=example,DC=com
- This convention is REQUIRED. Other conventions allowed if domainname<->base DN mapping is published

The gSSAuthName attribute provides a translation between the domain-local ID and (multiple) GSS security principals.

attributetype (1.3.6.1.4.1.250.10.6 NAME ('gSSAuthName') DESC 'GSS-API principal name exported token' EQUALITY bitStringMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)

The gSSPrincipal objectclass allows for the gSSAuthName attribute to be associated with a posixAccount.

attributetype (1.3.6.1.4.1.250.10.7 NAME ('gSSPrincipal') DESC 'GSS Principal Name' SUP posixAccount MAY(gSSAuthName))

LDAP Caching Proxy Example

Here is the local domain (sample.com) LDAP name service caching the remote domain (university.edu) rfc2307 posixAccount information with the gSSAuthName attribute.

dc=com, dc=sample, ou=people

<All rfc2307 people entries for sample.com>

uid=bob, uidNumber=2501,

gSSAuthName=bob@SAMPLE.COM

dc=edu, dc=university, ou=people

<All rfc2307 people entries for university.edu>

uid=alice, uidNumber=3888,

gSSAuthName=alice@UNIVERSITY.EDU

- The cached university.edu information stored in sample.com's LDAP name service needs to be validated on a regular basis.
 - Perhaps with an LDIF feed from university.edu

- Drill into NFSv4 Authorization Context definition
- Complete LDAP extensions
 - ID mapping (remoteID <-> localID)
- Additional text on remote groups

