MIKEY-IBAKE draft-cakulev-mikey-ibake-00

Violeta Cakulev Violeta.Cakulev@alcatel-lucent.com Alcatel-Lucent ITEF 76 - Hiroshima

MIKEY [RFC3830]

MIKEY design principles

- End-to-end security
 - Only the participants involved in the communication have access to the generated key(s)
- Simplicity

Efficiency

• Low bandwidth consumption, low computational workload, small code size, and minimal number of roundtrips

Tunneling

• Possibility to integrate MIKEY in session establishment protocols

Independence

 Independent from any specific security functionality of the underlying transport

MIKEY Updates

- RFC 4650 HMAC-Authenticated Diffie-Hellman for Multimedia Internet KEYing (MIKEY)
- RFC 4738 MIKEY-RSA-R: An Additional Mode of Key Distribution in Multimedia Internet KEYing (MIKEY)

Motivation

What is missing?

MIKEY mode that provides

- Mutual authentication of involved parties
- All parties involved contribute to the session key generation
- Perfect forward and backward secrecy
- Only the participants involved in the communication have access to the session key
 - No key escrow
- Based on asynchronous cryptography without certificate-based PKI

Solution

MIKEY-IBAKE

- IBAKE: Identity Based Authenticated Key Agreement
 - Identity Based Systems: A new step in public key cryptography
 - Example use: securing email, enterprise applications, etc. (<u>RFC 5091</u>, <u>RFC 5408</u>, <u>RFC 5409</u>)
 - Mutual authentication of endpoints
 - Establishment of the end-to-end security
 - Perfect forward and backward secrecy
- Expected application domains
 - Media plane security in the 3GPP IP Multimedia Subsystem (IMS)
 - Managed Services for Enterprises

Solution Framework

Based on an Identity Based asymmetric cryptographic framework

- Every participant has a public and a private key
- Public key (PubK) is identity based (e.g., IMSidentity | date)
- Private key (PrK) corresponding to Public key is issued by a trusted Key Management Service (KMS)
- Participants obtain private keys from KMS offline
 - Example: Participants contact their KMS once a month (more generally for the length of the subscription)
 - Security association between KMS and participant is pre-provisioned
- Encryption and Decryption of messages during key exchange based on Identity Based Encryption (IBE)
 - Reference: Boneh et al., <u>RFC 5091</u>, <u>RFC 5408</u>, <u>RFC 5409</u>

MIKEY-IBAKE Discussion

- Exchanged Elliptic Curve Diffie-Hellman (ECDH) values are IBE encrypted
- Session Key (abP) known only to Initiator and Responder
 - Due to hardness of the elliptic curve Diffie-Hellman problem
- Protocol necessitates three-way exchange
 - Session key can be generated after second message

Supported Features

MIKEY-IBAKE securely supports following features

- Forking delivery of a request to multiple endpoints
 - Established session key is known only to the Initiator and the endpoint that answered the call
- Retargeting request sent to one endpoint but delivered to a different endpoint
 - Established session key is known only to the Initiator and the endpoint that answered the call
- Deferred delivery session content cannot be delivered to the destination at the time that it is being sent
 - Encrypted session content/media is stored
 - Stored media can be decrypted only by the intended Responder

Possible Extensions

Group Communication

- Group key not known to the Conference Server
- Adding a new participant
 - Group key changes after new user is admitted
- Participant exits the call
 - Group key changes after participant exits the call

Next Step

Specify MIKEY-IBAKE in msec WG