Managing Long-Term Keys for Routing Protocols

November 10, 2009 Russ Housley Tim Polk

Drafts

- Database of Long-Lived Cryptographic Keys
 - <draft-housley-saag-crypto-key-table-00.txt>
- Routing Authentication Using A Database of Long-Lived Cryptographic Keys
 - <draft-polk-saag-rtg-auth-keytable-00.txt>
- The former defines a conceptual model, the latter describes the model's application to routing protocols

Fundamental Concept

- Manual key management is today's reality in routing protocols
 - Future key establishment protocols must co-exist with manual keying
- Key establishment will remain separate protocols, not a handshake in routing protocols
- Modeled as a database or table of shared keys that are available to the routing protocols
- Accommodate textual description of database entries

Database

- Database is characterized as a table, with a row for each key
- Identifies 11 columns for the key and its attributes
- Describes rollover between long-lived keys

Database Columns (1 of 2)

LocalKeyID

 A 16-bit integer in hexadecimal, unique in the context of the database. The high order bit differentiates pairwise and group keys.

PeerKeyID

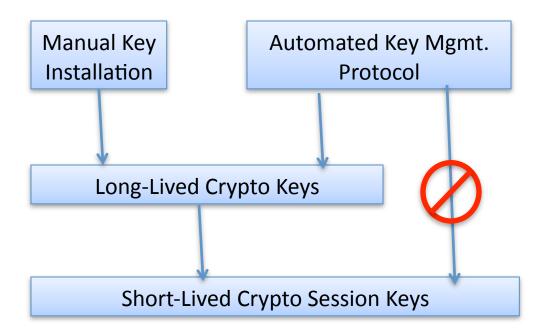
- For pairwise keys, the peerKeyID field is a 16 bit integer in hexadecimal provided by the peer or "unknown" if the peer has not yet provided this value.
- For group keying, the PeerKeyID field is set to "group", which easily accommodates group keys generated by a third party.

KDF

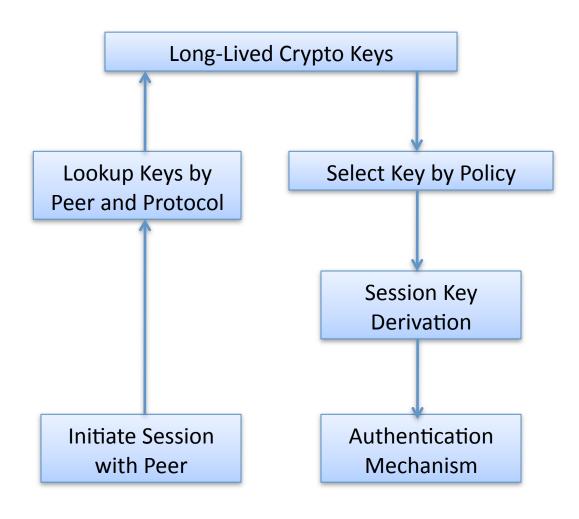
 Indicates which key derivation function (KDF) is used to generate short-lived keys (or "none" when the long-term key is used directly).

KDFInputs

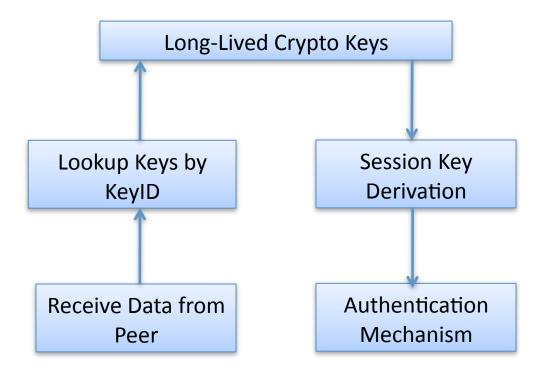
Used when supplemental public or private data is supplied to the KDF.


AlgID

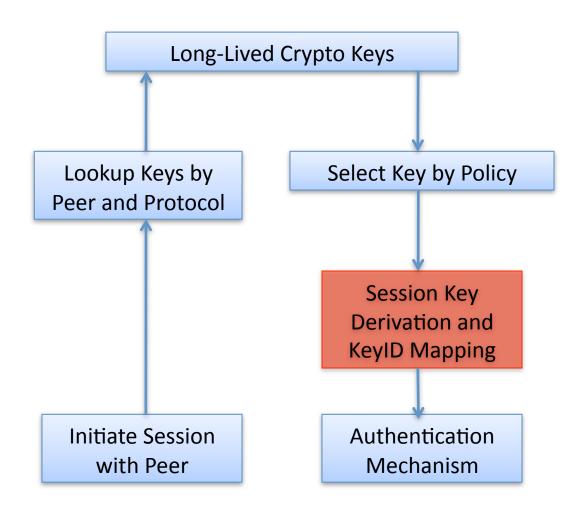
Indicates which cryptographic algorithm to be used with the security protocol.


Database Columns (2 of 2)

- Key
 - A hexadecimal string representing a ling-lived symmetric cryptographic key.
- KeyDirection
 - Indicates whether this key may be used for inbound traffic, outbound traffic, or both.
- NotBefore
 - Specifies the earliest date and time at which this key should be considered for use.
- NotAfter
 - Specifies the latest date and time at which this key should be considered for use.
- Peers
 - Identifies a peer system or set of peer systems
- Protocol
 - Identifies the security protocol where this key is to be used to provide cryptographic protection.


The Overall Model

Initiator's View


Receiver's View

KeyID Mapping

- Database specification mandates a 16-bit KeyID
- KeyID in the table may not be the KeyID used on the wire
 - Need to support more than just one security protocol
 - Allow translation to any needed format or size
 - Overlapping ranges may unnecessarily limit the total number of keys that can be maintained
- Mapping can resolve size mismatch and overcome overlapping range issues
 - Only applicable to local KeyID values
 - Peer's KeylDs are not unique in the context of the table

Initiator's View with Mapping

Questions?