Issues with existing Cryptographic Protection Methods for Routing Protocols

Joel Jaeggli 11/9/09

History

- Draft as been floating around in less consolidated form since 2006
- Found a home in the reconstituted OPSEC WG
- Rehabilitated
- Believed to be headed for informational
- Major Contributors
 - Vishwas Manral IP Infusion
 - Manav Bhatia Alcatel Lucent
 - Russ White Cisco Systems
 - Joel Jaeggli Check Point Software

Goals / Application

- Declare for the sake of argument the issues that we know we live with in existing IGP cryptographic protection mechanism.
- Uses:
 - The router originating this packet is:
 - Authorized via the shared key mechanism to peer with the local router, and exchange routing data.
 - The implicit trust of routing protocol exchange protected by a shared secret is intended to protect against the injection of falsely generated routing data being injected into the routing system by unauthorized systems.
 - Assert that the data has not been altered in transit between two neighboring routers.

Goals / Limitations

- Limitations:
 - Manual configuration of shared secret keys, especially in large networks and between networks, poses a major management problem. In many cases it is challenging to replace keys without significant coordination or disruption.
 - In some cases, when manual keys are configured, some forms of replay protection are no longer possible, allowing the routing protocol to be attacked though the replay of captured routing messages.
 - The MD5 digest algorithm was not designed to be used in the way most routing protocols are using it. which has potentially serious future implications.

Getting out ahead of MD5

- Discrete PDUs are not trivially vulnerable to pre-image or hash collision attacks
- That said, taking the tool out of the Box is probably the right thing to do.
- Some external requirements driving replacement of MD5 as well.
- Security Area ADs agree.
- Concluding that it's hard to exploit is not an excuse to not deprecate an existing approach

Replay protection still a problem

- E.G. OSPF sessions with can be replayed if an adjacency is brought down
- OSPF, multiple packets with the same sequence number.
- Multiple opportunities to DOS OSPFv3 adjacencies through replay use to ESP use of manual keying
- ISIS has similar issues.

IP addresses not covered by the MAC

 E.G. in OSPF adjacencies between two neighbors can be brought down by replacing an authenticated hello having changed the source address.

Rekeying...

- You can do that?
 - In practice, not so often.
 - Some shims such as BGP daemons temporarily accepting bad digests up to the hold interval represent further opportunities for DOS
 - The possibility of more than two parties requiring the shared secret caused us avoid inclusion in the past.

IGPs and BGP (of course) are now deployed in fairly hostile environments

- Are all the devices participating in the same administrative domain with an enterprise or ISP?
 - Exchange point fabrics
 - DMZs
 - Split between security, network operations, hosting
- Never mind the question of what routing information to accept or propagate
- The authorization and protection assumptions built into our existing protocols feel a little dated.

These are all problems.. What do we do about them?

- Well there's KARP...
- Overall desire to not be caught short.
- BGP ttl hack and rapid tcp MD5 deployment for control plane protection being obvious and rapid responses to control plate exposure.
- When the tools are deployed before they're needed then transition from one to the other at least has the possibility of being orderly.
- Orderly is nice.
- Our track record both in the IETF and operationally is not great.

Issues with existing Cryptographic Protection Methods for Routing Protocols

- OPSEC can socialize the problem.
- Ops is not going to solve them.