IPv6 Neighbor Cache Update txt

Hiroshi KITAMURA
NEC Corporation
kitamura@da.jp.nec.com

Index

- Introduction / Background
- Problems
 - on (Not-Used) Long Remained NC entries.
- **Proposed Solutions** (Neighbor Cache Update (Delete))
 - Heuristic Type: (w/o any ND message extensions)
 - Explicit Type: (w/ small extension (NA flags))
 - Explicit + Heuristic Combined Type
- Implementation

Introduction / Background

IP address's "Using Status" is frequently changed "Used" <=> "Not Used"

- Disconnecting / Connecting nodes from/to networks at mobile environments
- Suspending / Hibernating / Resuming nodes
 - Turn Off / On PCs
 - Release / Discover IP address by DHCP
- Utilize Changeable-type Addresses:
 Temporary Address / Ephemeral Address*

^{* &}lt;draft-kitamura-ipv6-ephemeral-address-01>

Problems on (Not-Used) Remained Neighbor Cache Entries

• What's happens when (IP address is gone) IP address's **Using Status** is changed form "Used" to "Not Used"?

• Related Neighbor Cache Entries

(that are created for the "Gone IP addresses")

are not deleted and still remained

for a long time (typically 24 hours).

Example: (Not-Used) Long Remained NC entries 1/2

Example: (Not-Used) Long Remained NC entries 2/2

Why Not-Used NC entries are remained?

- NC state procedures are showed in right figure that is defined in ND specification [RFC4861].
- Not-Used NC entries are remained at STALE state for a long time and finally they are deleted by the "garbage collections".

Characteristics on

(Not-Used) Long Remained NC entries

It is clear:

from efficientresource management viewpoint:

NOT Good.

from security enhancement viewpoint:NOT Good.

What should we do?

• We have to follow the manner:

"Leave everything neat and tidy when you go behind you"

- When using status of an IP address is changed from "Used" to "Not-Used", its related cache entry should be deleted cooperatively.
- We have to provide quick and clear neighbor cache update (delete) functions.

Proposed Solutions: Neighbor Cache Update (Delete) Methods

Three types of Neighbor Cache Update (delete) methods are proposed.

- 1. Heuristic Type:
 - Does NOT require any ND message extensions
- 2. Explicit Type:
 Requires small extensions (NA message Flags)
- 3. Explicit + Heuristic Combined Type:
 Any types of nodes are supported effectively

Heuristic Type Neighbor Cache Update

- Stimulate the remaining STALE (inactivated) NC entry by sending the special NS message (source = Gone IP address) from client node.
- (The target NC entry is activated by issuing NA.)
 Its state is proceeded to next state DELAY and finally the target NC entry is deleted.
- Takes short time periods for DELAY and PROBE states.
- No ND message extensions are required.

Explicit Type: Neighbor Cache Update

- Issue an Extended NA
 message (+extended flags) to
 delete target NC entry from
 client node.
- If a receiver node understands the extended flags, the target NC entry is quickly deleted.
- If the node does not understand, the message is simply ignored.
 (the NC entry is not deleted and errors are not reported.)

Explicit Type: NA Message Flags Extensions

Explicit + Heuristic Combined Type Neighbor Cache Update

- Support both types of nodes that *do* and *do not* understand the NA extensions effectively.
 - Nodes *do* understand extensions:
 the entry is deleted quickly by
 the 1st Explicit operation.
 - Nodes *do not* understand extensions:
 the entry is deleted shortly by
 the 2nd Heuristic operation.
- In any node cases, the target
 NC entry is surely deleted.

Implementations

- Proposed all "Neighbor Cache Update" specification has been implemented and verified.
- Delete Responder (Edge Router) type:
 - Explicit Type:
 - FreeBSD
 - Heuristic Type:
 - IOS, Linux, FreeBSD, MacOS X, Windows, etc.
- Delete Initiator (Client) type:
 - Explicit / Heuristic Type: (Verified)
 - FreeBSD
 - Explicit / Heuristic Type: (Under Developing)
 - Linux, MacOS X, Windows, etc.

Consensus Verification to Proposed Methods

Which methods do you prefer?

- 1. Heuristic Type:
 Does NOT require any ND message extensions
- 2. Explicit Type:
 Requires small extensions (NA message Flags)
- 3. Explicit + Heuristic Combined Type:
 Any types of nodes are supported effectively
 [Authors recommend this type method]

Related Issues

• Same types of problems can be found in IPv4 ARP table entries.

• How do we have to deal with it?