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Relevant Documents

Papers/Drafts:

“Breaking Up the Transport Logjam”

— HotNets '08: http://bford.info/pub/net/logjam.pdf

“Flow Splitting with Fate Sharing”

— Research draft: http://bford.info/pub/net/fowsplit.pdf

“A Next Generation Transport Services Architecture”

— Internet-Draft: draft-iyengar-ford-tng-00.txt

(Current) Project Web Page:

— http://bford.info/tng/

http://bford.info/pub/net/logjam.pdf
http://bford.info/pub/net/flowsplit.pdf
http://bford.info/tng/
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The End-to-End Principle

In TCP/IP's original design, only the end hosts
— see past a packet's Network Layer (IP) header

▶ Generality: network carries any payload
— maintain “hard state” whose loss visibly impacts the user

▶ Fate Sharing: transports retransmit E2E,
can recover from failures in intermediate nodes
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The Rise of the Middle

Internet scaling and diversity have led operators to 
place ever more intelligence in the middle

— Firewalls: enforce network access policies
— Traffc shapers: manage network bandwidth & delay
— Network Address Translators (NATs): 

alleviate IPv4 address scarcity by sharing IP addresses
— Performance enhancing proxies (PEPs): 

optimize performance in problematic situations,
e.g., high-speed, high-delay, or wireless links [RFC3135]

This Talk's Focus
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Eroding End-to-Endness of Transports

Middleboxes need to interact with Transport Layer
— Firewalls, traffc shapers: to differentiate between 

applications via TCP/UDP port numbers
— NATs: to modify IP addresses & port numbers
— PEPs: to monitor & affect TCP congestion control

Result: the Transport Layer is no longer “End-to-End”
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The Transport Layer's Lost Purity

Along with transport end-to-endness, we also lose:
— Generality: new transports can't pass → undeployable
— Fate sharing: middlebox failures → hard TCP failures
— Security: can't use transport-neutral security (IPsec)

Transports are still designed to, but now fail to,
provide reliable end-to-end communication services
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The Transport Layer is
Stuck in an Evolutionary Logjam!
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Tng: Transport next-generation

Refactor transport layer to match reality
— Network-oriented functions of interest to middleboxes

● Endpoints (ports); fow regulation (congestion control)
— Application-oriented functions serving the endpoints

● Reliability, security
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End/Middle Coexistence

Tng's Key Beneft: enable middleboxes to
— interact cleanly with network-oriented functions
— avoid interfering with E2E application-oriented functions
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Example Tng Protocol Stack

Can implement Tng using only “legacy” protocols
— Workable design; not ideal in function or effciency
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Endpoint Layer

edge routing needs
richer endpoint information

to enforce policy
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Data Link Layer

Network Layer

Application Layer

Flow Regulation Layer

Semantic Layer

Isolation Layer

Endpoint Layer



12

TCP HeaderTCP Header

UDP HeaderUDP Header DCCP HeaderDCCP Header

Endpoint Identifcation via Ports

Each transport traditionally has its own port space

IP HeaderIP Header

Source
Port

Dest
Port

Source
Port

Dest
Port

Source
Port

Dest
Port

Source IP Address
Dest IP Address

TCP
Port Space

UDP
Port Space

DCCP
Port Space

Network Layer
IP Address Space



13

Why the Network Needs to See Ports

Internet design assumes network needs only IP address
— (e.g., only IP address appears in every fragment)

Assumption has proven wrong!
● Firewalls, traffc shapers need to see them

— to enforce connectivity policies, need to know about
not just hosts but also protocols, applications, users, ...

● NATs need to see & transform them
— IPv4: ports increasingly just “16 more IP address bits”

● All must understand transport headers
— ⇒ only TCP, UDP get through now
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Tng's Layering Solution

Factor endpoints into shared Endpoint Layer
— Starting point “Endpoint Layer” = UDP
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Embrace the Inevitable

It's happening in any case!
● TCP/UDP is “New Waist of the Internet Hourglass”

[Rosenberg 08]
● Every new transport requires UDP encapsulations

— SCTP [Ong 00, Tuexen 07, Denis-Courmont 08]
— DCCP [Phelan 08]

● A lot of non-transports do too
— IPSEC [RFC 3947/3948], Mobile IP [RFC 3519], 

Teredo [RFC 4380], …

Other benefts: see “Breaking Up the Transport Logjam”
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Flow Layer

performance tuning
at technology & 

administrative boundaries
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Congestion Control
on a Diverse Internet

TCP congestion control traditionally “end-to-end”

But one end-to-end path may cross many...
— different network technologies

● Wired LAN, WAN, WiFi, Cellular, AdHoc, Satellite, …
● Standard TCP performance sucks on many of these;

needs specialized adaptation!
— different administrative domains

● Each cares about CC algorithms in use, for fairness
● May wish to deploy new CC schemes, e.g., XCP/RCP
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Emerging Market Solution

Performance Enhancing Proxies (PEPs)
● Tune TCP performance within the network
● Increasingly pervasive; may be “the next NAT”:

— $236 million market in 2005 [Hall 2006]
— $1 billion market in 2009 [McGillicuddy 2009]

● Breaks: fate sharing, new transports, IPsec 
[RFC3135]

LANLAN
Host HostPEP PEP

Cisco RBSCP
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Tng Solution: Flow Splitting

Decompose congestion control (Flow Layer)
from transport semantics (Semantic Layer)

— PEPs interpose on Flow Layer but not Semantic Layer
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Technical Challenges

May (or may not) look easy; the devil's in the details:
● Joining: how to join congestion-controlled path 

sections into E2E congestion-controlled path?
● Compatibility: how to deploy Tng incrementally,

staying compatible with existing networks & PEPs?
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How to Join Flow Segments to yield 
End-to-End Congestion Control?
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Exploring two approaches:

1) Queue sharing (implemented)

2) Congestion control stacking (WIP)
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Queue Sharing
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Congestion Control Stacking
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Compatibility with Legacy PEPs

How to deploy Tng incrementally,
given prevalence of PEPs that know only TCP?

— Prefer DCCP-like protocol implementing Flow Layer...
— But fall back on TCP as “compatibility Flow Layer”
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Evaluation

Using:
● NS2-based Simulations

— Building on NS2's models of TCP congestion control

● Working prototype usable on real networks
— Building on Structured Stream Transport (SST)

Ford, “Structured Streams: a New Transport 
Abstraction”, SIGCOMM 2007
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SST-Based Prototype Structure
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Simulation Scenario 1: Results
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Simulation Scenario 2

Delay-Sensitive Use of DSL/Cable Links
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Simulation Scenario 2: Results

Upload Bandwidth Upload Latency
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LANLAN

Prototype Test Scenario 1

Transfer over Lossy Long-Distance Satellite Link
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Reliable Transfer over Satellite Link
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Prototype Test Scenario 2

Fate Sharing:
recovery of end-to-end stream communication
across fow layer failures
● SST Stream Protocol associates streams

with stable cryptographic endpoint identities
● Underlying Flow fails if a host's IP address changes,

but stream can (re)start and migrate to new fow

Stream Stream
End-to-End Reliability

Flow A Flow A

EID 1 EID 2

IP A1 IP A1

Flow B Flow B
IP A2 IP A1

Internet



34

Prototype Test Scenario 2

Mobile end host starts fle transfer at time 0,
IP address changes at 10 sec.
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“Clean Slate” versus “Legacy”
Implementation of Tng Architecture

Code size and Protocol Overhead Comparison
— Current SST Prototype vs Equivalent Linux Protocols
— C++ vs C, prototype vs mature stacks – not really fair!
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Conclusion

Transport evolution is stuck!
— Lost: transport evolvability,

E2E security, fate sharing

To unstick, need to refactor:
— Enable middleboxes to function

without interfering with end-to-end transport functions

Tng allows performance enhancing proxies
to split fows and tune congestion control
while preserving end-to-end semantics

Further information: http://bford.info/tng/

http://bford.info/tng/

