
Flow Splitting in Tng,
a Next-Generation

Transport Architecture

Bryan Ford
Max Planck Institute
for Software Systems
and Yale University

baford@mpi-sws.org

Janardhan Iyengar
Franklin & Marshall

College

jiyengar@fandm.edu

http://bford.info/tng/

Presentation for IETF 75 – July 27, 2009

http://bford.info/tng/

2

Relevant Documents

Papers/Drafts:

“Breaking Up the Transport Logjam”

— HotNets '08: http://bford.info/pub/net/logjam.pdf

“Flow Splitting with Fate Sharing”

— Research draft: http://bford.info/pub/net/fowsplit.pdf

“A Next Generation Transport Services Architecture”

— Internet-Draft: draft-iyengar-ford-tng-00.txt

(Current) Project Web Page:

— http://bford.info/tng/

http://bford.info/pub/net/logjam.pdf
http://bford.info/pub/net/flowsplit.pdf
http://bford.info/tng/

3

The End-to-End Principle

In TCP/IP's original design, only the end hosts
— see past a packet's Network Layer (IP) header

▶ Generality: network carries any payload
— maintain “hard state” whose loss visibly impacts the user

▶ Fate Sharing: transports retransmit E2E,
can recover from failures in intermediate nodes

Network

End Host End Host

Link

Application

Network

Link

Application

Network

Link

Network

Link

Router Router

Transport Transport

4

The Rise of the Middle

Internet scaling and diversity have led operators to
place ever more intelligence in the middle

— Firewalls: enforce network access policies
— Traffc shapers: manage network bandwidth & delay
— Network Address Translators (NATs):

alleviate IPv4 address scarcity by sharing IP addresses
— Performance enhancing proxies (PEPs):

optimize performance in problematic situations,
e.g., high-speed, high-delay, or wireless links [RFC3135]

This Talk's Focus

5

Eroding End-to-Endness of Transports

Middleboxes need to interact with Transport Layer
— Firewalls, traffc shapers: to differentiate between

applications via TCP/UDP port numbers
— NATs: to modify IP addresses & port numbers
— PEPs: to monitor & affect TCP congestion control

Result: the Transport Layer is no longer “End-to-End”

Network

End Host End Host

Link

Application

Network

Link

Application

Network

Link

Network

Link

Middlebox Middlebox

Transport Transport

Application Application

Transport Transport

6

The Transport Layer's Lost Purity

Along with transport end-to-endness, we also lose:
— Generality: new transports can't pass → undeployable
— Fate sharing: middlebox failures → hard TCP failures
— Security: can't use transport-neutral security (IPsec)

Transports are still designed to, but now fail to,
provide reliable end-to-end communication services

Network

End Host End Host

Link

Application

Network

Link

Application

Network

Link

Network

Link

Middlebox Middlebox

Transport Transport

Application Application

Transport Transport

7

The Transport Layer is
Stuck in an Evolutionary Logjam!

8

Tng: Transport next-generation

Refactor transport layer to match reality
— Network-oriented functions of interest to middleboxes

● Endpoints (ports); fow regulation (congestion control)
— Application-oriented functions serving the endpoints

● Reliability, security

Data Link Layer

Network Layer

Application Layer

Data Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Semantic Layer

Transport Layer
Isolation Layer End-to-End Security

Network-Oriented
Functions

Application-Oriented
Functions

9

End/Middle Coexistence

Tng's Key Beneft: enable middleboxes to
— interact cleanly with network-oriented functions
— avoid interfering with E2E application-oriented functions

Network

End Host End Host

Link

Network

Link

Network

Link

Network

Link

Middlebox Middlebox

Application Application

Endpoint

Flow

Semantic

Isolation

Endpoint

Flow

Semantic

Isolation

Endpoint

Flow

Endpoint

Flow

10

Example Tng Protocol Stack

Can implement Tng using only “legacy” protocols
— Workable design; not ideal in function or effciency

Link Layer

Network Layer

Application Layer

Endpoint Layer

Flow Regulation Layer

Semantic Layer

Isolation Layer End-to-End Security

Network-Oriented
Functions

Application-Oriented
Functions

802.11

IP

HTTP

UDP

DCCP

TCP (CC disabled)

DTLS

Functional Layer Legacy Protocol

11

Endpoint Layer

edge routing needs
richer endpoint information

to enforce policy
Physical Layer

Data Link Layer

Network Layer

Application Layer

Flow Regulation Layer

Semantic Layer

Isolation Layer

Endpoint Layer

12

TCP HeaderTCP Header

UDP HeaderUDP Header DCCP HeaderDCCP Header

Endpoint Identifcation via Ports

Each transport traditionally has its own port space

IP HeaderIP Header

Source
Port

Dest
Port

Source
Port

Dest
Port

Source
Port

Dest
Port

Source IP Address
Dest IP Address

TCP
Port Space

UDP
Port Space

DCCP
Port Space

Network Layer
IP Address Space

13

Why the Network Needs to See Ports

Internet design assumes network needs only IP address
— (e.g., only IP address appears in every fragment)

Assumption has proven wrong!
● Firewalls, traffc shapers need to see them

— to enforce connectivity policies, need to know about
not just hosts but also protocols, applications, users, ...

● NATs need to see & transform them
— IPv4: ports increasingly just “16 more IP address bits”

● All must understand transport headers
— ⇒ only TCP, UDP get through now

14

Tng's Layering Solution

Factor endpoints into shared Endpoint Layer
— Starting point “Endpoint Layer” = UDP

Transport HeaderTransport Header
Transport HeaderTransport Header

Network Header
(IP)

Network Header
(IP)

Source IP Address
Dest IP Address

Endpoint Layer
Port Space

Network Layer
IP Address Space

Endpoint Header
(UDP)

Endpoint Header
(UDP)

Source
Port

Dest
Port

15

Embrace the Inevitable

It's happening in any case!
● TCP/UDP is “New Waist of the Internet Hourglass”

[Rosenberg 08]
● Every new transport requires UDP encapsulations

— SCTP [Ong 00, Tuexen 07, Denis-Courmont 08]
— DCCP [Phelan 08]

● A lot of non-transports do too
— IPSEC [RFC 3947/3948], Mobile IP [RFC 3519],

Teredo [RFC 4380], …

Other benefts: see “Breaking Up the Transport Logjam”

16

Flow Layer

performance tuning
at technology &

administrative boundaries
Physical Layer

Data Link Layer

Network Layer

Application Layer

Semantic Layer

Isolation Layer

Endpoint Layer

Flow Regulation Layer

17

Congestion Control
on a Diverse Internet

TCP congestion control traditionally “end-to-end”

But one end-to-end path may cross many...
— different network technologies

● Wired LAN, WAN, WiFi, Cellular, AdHoc, Satellite, …
● Standard TCP performance sucks on many of these;

needs specialized adaptation!
— different administrative domains

● Each cares about CC algorithms in use, for fairness
● May wish to deploy new CC schemes, e.g., XCP/RCP

18

Emerging Market Solution

Performance Enhancing Proxies (PEPs)
● Tune TCP performance within the network
● Increasingly pervasive; may be “the next NAT”:

— $236 million market in 2005 [Hall 2006]
— $1 billion market in 2009 [McGillicuddy 2009]

● Breaks: fate sharing, new transports, IPsec
[RFC3135]

LANLAN
Host HostPEP PEP

Cisco RBSCP

19

Tng Solution: Flow Splitting

Decompose congestion control (Flow Layer)
from transport semantics (Semantic Layer)

— PEPs interpose on Flow Layer but not Semantic Layer

Network

End Host End Host

Link

Network

Link

Network

Link

Network

Link

Flow Middlebox Flow Middlebox

Application Application

Endpoint

Flow

Semantic

Isolation

Endpoint

Flow

Semantic

Isolation

Endpoint

Flow

Endpoint

Flow

20

Technical Challenges

May (or may not) look easy; the devil's in the details:
● Joining: how to join congestion-controlled path

sections into E2E congestion-controlled path?
● Compatibility: how to deploy Tng incrementally,

staying compatible with existing networks & PEPs?

21

How to Join Flow Segments to yield
End-to-End Congestion Control?

Endpoint

Flow

Host A Host B

Network

Semantic

Application

Endpoint

Flow

Network

Semantic

Application

Endpoint

Flow

Network

Endpoint

Flow

Network

Flow Middlebox Flow Middlebox

Exploring two approaches:

1) Queue sharing (implemented)

2) Congestion control stacking (WIP)

22

Queue Sharing

Net

Source
Host

Flow
Middlebox

Router Router Router Router Target
Host

App

Net

App

Congestion Control Loop 1 Congestion Control Loop 2Transmit
Buffer

Receive
Buffer

Feedback
(ACKs, etc.)

Feedback
(ACKs, etc.)

(1)(1) Link Link
BottleneckBottleneck

(3) (3) “Packets “Packets
Dropped!”Dropped!”

(4)(4) “Slow “Slow
Down!”Down!”

(5)(5) Queue Queue
FillsFills

(6) (6) “Packets “Packets
Dropped!”Dropped!”

(7)(7) “Slow “Slow
Down!”Down!”

(2)(2) Queue Queue
FillsFills

(implemented in NS2 simulation & working prototype)

23

Congestion Control Stacking

Net

Source
Host

Flow
Middlebox

Router Router Router Router Target
Host

App

Net

App

(work in progress)

Segment 1 Control Loop Segment 2 Control Loop

End-2-End Congestion Control Loop (e.g., XCP)

“Virtual Router” Input Queue

24

Compatibility with Legacy PEPs

How to deploy Tng incrementally,
given prevalence of PEPs that know only TCP?

— Prefer DCCP-like protocol implementing Flow Layer...
— But fall back on TCP as “compatibility Flow Layer”

Network

Application

Endpoint

Flow

Semantic

IP

HTTP, SIP, ...

Legacy
TCP
Flow

New Semantic Layer Protocol

IP

New Endpoint Protocol

New Flow Protocol

25

Evaluation

Using:
● NS2-based Simulations

— Building on NS2's models of TCP congestion control

● Working prototype usable on real networks
— Building on Structured Stream Transport (SST)

Ford, “Structured Streams: a New Transport
Abstraction”, SIGCOMM 2007

26

SST-Based Prototype Structure

Stream Protocol

Channel Protocol
(authentication, encryption)

Negotiation Protocol
(key exchange)

UDP

Application Protocol

Semantic
Layer

Reliable Byte Streams

End-to-End Channels

UDP Datagrams

Channel Protocol
(congestion control)

Negotiation Protocol

Segmented Channels

IP

IP Packets

Isolation
Layer

Flow
Regulation

Layer

Network
Layer

Endpoint
Layer

Application
Layer

27

Ad Hoc
Wireless
Network

Wired
Internet

Mobile
Wireless

Link

Simulation Scenario 1

Last-mile proxies for wireless/mobile links

Flow
MidB

Flow
MidB

Host Host

Mobility-Aware
Congestion Control

[M-TCP, ELFN, ...]
TCP-friendly Congestion Control

[Reno, TFRC, ...]

Ad Hoc Wireless
Congestion Control

[WTCP, ATCP, ...]

28

Simulation Scenario 1: Results

Download Upload

Flow
MidB

Flow
MidBHost Host

Wireless WirelessWired

Host Host
Wireless WirelessWired

End-to-End: Wireless Loss Kills TCP Performance

With Flow Splitting: Performance Maintained

29

Simulation Scenario 2

Delay-Sensitive Use of DSL/Cable Links

Low-Delay
Congestion Control

TCP-friendly
Congestion Control

100Mbps
20ms

ADSL link
Up: 384Kbps,10ms
Dn: 1.5Mbps,10ms

10Mbps
10ms

100Mbps
20ms

Cross-traffic
access links:

100Mbps, 25ms

Cross-traffic
source/sink

Router1 Router2

Server

Client

Gateway

30

Simulation Scenario 2: Results

Upload Bandwidth Upload Latency

Flow
MidB

Host Host
Cable/DSL Internet

Host Host
End-to-End Vegas: Low Latency, but Loses to Cross-Traffic

With Flow Splitting: High Bandwidth + Low Latency

Host Host
End-to-End Reno: High Bandwidth, but Causes High Latency

Cable/DSL Internet

Cable/DSL Internet

Vegas Reno

31

LANLAN

Prototype Test Scenario 1

Transfer over Lossy Long-Distance Satellite Link

Host Host

TCP-friendly CC
[Reno, TFRC, ...]

Flow
MidB

TCP-friendly CC
[Reno, TFRC, ...]

Specialized/High-Performance CC
[HS-TCP, Scalable TCP, BIC-TCP, ...]

Flow
MidB

LANLAN
Host Host

Flow
MidB

Flow
MidB

32

Reliable Transfer over Satellite Link

33

Prototype Test Scenario 2

Fate Sharing:
recovery of end-to-end stream communication
across fow layer failures
● SST Stream Protocol associates streams

with stable cryptographic endpoint identities
● Underlying Flow fails if a host's IP address changes,

but stream can (re)start and migrate to new fow

Stream Stream
End-to-End Reliability

Flow A Flow A

EID 1 EID 2

IP A1 IP A1

Flow B Flow B
IP A2 IP A1

Internet

34

Prototype Test Scenario 2

Mobile end host starts fle transfer at time 0,
IP address changes at 10 sec.

35

“Clean Slate” versus “Legacy”
Implementation of Tng Architecture

Code size and Protocol Overhead Comparison
— Current SST Prototype vs Equivalent Linux Protocols
— C++ vs C, prototype vs mature stacks – not really fair!

36

Conclusion

Transport evolution is stuck!
— Lost: transport evolvability,

E2E security, fate sharing

To unstick, need to refactor:
— Enable middleboxes to function

without interfering with end-to-end transport functions

Tng allows performance enhancing proxies
to split fows and tune congestion control
while preserving end-to-end semantics

Further information: http://bford.info/tng/

http://bford.info/tng/

