Virtual Aggregation (VA)

Paul Francis, MPI-SWS
Xiaohu Xu, Huawei,
Hitesh Ballani, Cornell
Dan Jen, UCLA
Robert Raszuk, Cisco
Lixia Zhang, UCLA

Current status

- New WG item in GROW
- Four informational drafts (six authors):
 - draft-ietf-grow-va-00
 - draft-ietf-grow-va-gre-00
 - draft-ietf-grow-va-mpls-00
 - draft-ietf-grow-va-perf-00
- Two partial implementations
 - Huawei, MPI-SWS (Quagga/Linux)

Virtual Aggregation (VA)

- A simple technique to shrink FIB size
 - Does not shrink RIB size
 - Can incur latency/load penalty, though this can be kept small
- Flexible: tight control over FIB size of <u>any</u> router in an ISP (core, edge, etc.)
 - Think up to 10X FIB reduction with negligible latency/load penalty

Basic VA mechanism

Stockholm IETF, July 2009

Stockholm IETF, July 2009

A typical POP structure

FIB reduction today

FIB reduction today

How are tunnels configured?

Tunnels in VA drafts

- MPLS (using LDP)
- IP-in-IP (using RFC5512)
- GRE (using RFC5512)

Tunnel to APR

- Advertise loopback address as Next_Hop (NH) in BGP update for VP route
- If MPLS
 - Use LDP to establish tunnels to its loopback address (/32)
- If IP-in-IP
 - Use RFC5512 BGP Encapsulation Extended Attribute in VP route
- If GRE with Key
 - Use RFC5512 Tunnel Encapsulation Attribute in VP route

Tunnels to ASBR

- If MPLS
 - Use LDP to establish tunnel to every remote neighbor ASBR
 - Remote ASBR address is tunnel target
 - Use remote ASBR address as NH in BGP updates
 - Use PHP mechanism to strip MPLS header before delivering to remote ASBR

Tunnels to ASBR

- If GRE with Key
 - Assign a unique GRE Key to every remote neighbor ASBR
 - In BGP update:
 - Use remote ASBR address as NH
 - Advertise Key value in RFC5512 Tunnel Encapsulation Attribute

Tunnels to ASBR

- If IP-in-IP or GRE without Key
 - Assign a unique loopback address to every remote neighbor ASBR
 - i.e. remote ASBR1 = 10.1.1.1, remote ASBR2 = 10.1.1.2, etc.
 - In BGP update:
 - Use unique loopback address as NH
 - Use RFC5512 BGP Encapsulation Extended Attribute to indicate that tunneling should be used

Scalability of tunnels

- MPLS signals one tunnel per remote ASBR
 - Roughly 20K tunnels in transit ISP we studied
 - Each tunnel requires LDP signaling, and a /32 in OSPF
 - © Can reduce to one tunnel per local ASBR
 - By using stacked MPLS tags
- IP-in-IP advertises one prefix per local ASBRKeyed GRE has one tunnel per remote ASBR

FIB-install rules

- APRs must FIB-install all sub-prefixes within VP
- All routers must FIB-install all Virtual Prefixes (VP)
- All other prefixes <u>may</u> be FIB-suppressed

This requires that:

- APRs must know their own VPs
- All routers must know complete VP-list

All routers must know complete VP-list

- Current spec proposes a static table configured in all routers
 - Same table for all routers
- Current spec describes how to modify list (add, remove, merge, split)
 - Must be done in such a way that:
 - Forwarding is not disrupted
 - The FIB doesn't temporarily grow beyond its "before" and "after" sizes

Adding and removing VPs

- Adding a VP:
 - First configure VP in APR
 - FIB-install sub-prefixes
 - Then add VP to all VP-lists
 - FIB-suppress sub-prefixes
- Removing a VP:
 - First remove VP from all VP-lists
 - FIB-install sub-prefixes
 - Then remove VP from APR
 - FIB-suppress sub-prefixes

Splitting and Merging VP

- Splitting a VP
 - First do an add on both nested child VPs
 - Then do a remove on the parent VP
- Merging VPs
 - First do an add on the parent
 - Then do a remove on the child VP

Configuring Popular Prefixes

- The current spec mostly punts on this
 - Or, more politically correctly, leaves it to vendors as a competitive feature
- Some simple things can be done:
 - FIB-install all customer sub-prefixes
 - FIB-install all sub-prefixes for which the router is the egress
- But FIB-installing high-volume subprefixes is less easy

Automatic configuration?

- Do we need automatic config of the VP-list and high-volume sub-prefixes?
- And if so, how do we do it?

Automating config of high-volume sub-prefixes

 Note that it is the ingress router that needs to FIB-install to obtain shortest-path benefit

Two cases:

- 1. ASBR sees high volume incoming
 - Independently FIB-install high-volume sub-prefixes
- 2. ASBR sees high volume outgoing
 - Can be from many ingress routers, few of which see high-volume
 - Must somehow inform the ingress routers

Tagging high-volume sub-prefixes

- ASBR (or data-plane RR) identifies highvolume outgoing sub-prefixes
- ASBR/RR attaches a "should FIB-install" tag (attribute) to BGP updates for the subprefix
- Other routers use this as a hint in their FIB installing decision process

- i.e. don't need to FIB-install if there isn't room

Auto-config of VP-list: Tag VP approach

- Original VA spec had auto-config of VP-list:
 - APR would tag VP routes with "this is a VP" attribute
 - Onew config required, since APRs must know their VPs in any event
 - Routers install sub-prefixes unless within a VP
 - Problem was that a booting router may not see tagged VP route until <u>after</u> installing many subprefixes and possibly over-flowing the FIB

Auto-config of VP-list: Tag VP approach

- One solution:
 - Keep "this is a VP" attribute as originally envisioned
 - Rather than "FIB-install by default"
 - Unless shown to be within a VP
 - Do: "FIB-suppress by default"
 - Unless shown NOT to be within a VP
 - Downside is that many entries not FIB-installed until BGP done initializing
 - But this mitigated by GR (graceful restart)

Auto-config of VP-list: "May suppress" tag approach

- Another solution:
 - Install "VP ranges" in some fraction of routers
 - Only RRs
 - Only edge routers
 - Routers with "VP ranges" tag updates for sub-prefixes within VPs with a "may FIB-suppress" attribute
 - Routers know they can FIB-suppress the sub-prefix as soon as they learn the route
- Output is the second state of the second st

Next steps

- Discuss various auto-config approaches on mailing list
 - May lead to standards track rather than informational
- Discuss stacked MPLS tags on mailing list
- Write deployment/scenarios draft
- Continue working on implementations

Auto-config of VP-list: Tag VP approach

- One solution:
 - Keep "this is a VP" attribute as originally envisioned
 - This gives routers the VP-list in steady state
 - Routers remember the VP-list between boots
 - Routers assume "old" VP-list when start booting, modify VP-list during boot as new attributes received
 - Normally no or few changes between boots...

Current status

- WG item in GROW
- Four drafts:
 - draft-ietf-grow-va-00
 - Francis, Xu, Ballani, Jen, Raszuk, Zheng
 - draft-ietf-grow-va-gre-00
 - Xu, Francis, Raszuk
 - draft-ietf-grow-va-mpls-00
 - Francis, Xu
 - draft-ietf-grow-va-perf-00
 - Ballani, Francis, Jen, Xu, Zhang