
© 2009 IETF Trust All rights reserved.

NFSv4 and Sub-File
Caching

Mike Eisler

2009-03-25

2© 2009 IETF Trust All rights reserved.

Data Caching today in NFSv4

Whole file, via delegations
Exclusive (writer) or shared (reader)
Delegations are recalled when a conflicting OPEN is
received
– OPEN for READ or WRITE recalls an exclusive

delegation
– OPEN for WRITE recalls a shared delegation
Work best for read-only or single instance write
workloads
– Many (most?) single instance write workloads use

locking
Exclusive delegations are good for caching byte range locks

3© 2009 IETF Trust All rights reserved.

Why Consider Sub-File Delegations Now?

Our experience with pNFS shows that we know how to
deal with sub-file organization
– A blocks (SCSI) layout is sort of like a sub-file delegation

read layouts conflict with read/write layouts
Critical applications need sub-file sharing
– byte range locks aren’t good enough

not recallable
advisory in many cases
– consistency not ensured

Flash memory is a game changer
– The benefits of flash are best closest to the application

Unlike disks, aggregating flash storage devices does little to
improve latency and throughput

– NFS server vendors: embrace it or else

4© 2009 IETF Trust All rights reserved.

Requirements, Non-Requirements, &
Maybes
Requirements

Sub-file consistency
Enable applications that are already splitting data into fixed size power of
2 blocks
– database
– hypervisor
Compact Representation
Optimize for big files
– existing delegations serve small files fine
Deal with striping
Deal with de-duplication

Non-Requirements
Arbitrary byte ranges
– We don’t have to fix all gaps with POSIX (at least not now)

Maybe
True sub-file coherency
– If there is high contention on a block, the cost direct I/O from/to NFS

server is probably less than thrashing on cache token

5© 2009 IETF Trust All rights reserved.

It turns out …

… draft-eisler-nfsv4-pnfs-dedupe-00.txt deals addresses many of the
requirements:
Sub-file consistency
– I-D has a ddl_change_attr array in layout

If absent, server is promising to send CB_LAYOUTRECALL on the affected block
Trivial to allow client to tell server return layouts with ddl_change_attr absent

Enable applications that are already splitting data into fixed size power of 2 blocks
– I-D uses bit maps to represent blocks
Compact Representation
– ditto
Optimize for big files
– I-D uses hierarchical bit maps to represent blocks
– But I-D works well with small files too
Deal with striping
– On a per block (or per block range) basis, I-D’s protocol can refer client to a layout

type
Deal with de-duplication
– It has “dedupe” in the I-D name ☺

Maybe
True sub-file coherency
– If we want to go there, trivial to allow client to demand coherency

If we want to go there

6© 2009 IETF Trust All rights reserved.

Why not add sub-file delegation
operations?

Might turn NFSv4.2 into another death march
like NFSv4.1
We’ve added a lot of extensibility to NFSv4.1
– Let’s see if we can use it

7© 2009 IETF Trust All rights reserved.

Suggested Next Steps

Post a Requirements I-D
Begin a discussion
Post draft-eisler-nfsv4-pnfs-dedupe-01.txt
– add block level caching

8© 2009 IETF Trust All rights reserved.

Thanks
Q/A

Or I can reprise the draft-eisler-nfsv4-pnfs-dedupe-
00.txt presentation from Minneapolis

9© 2009 IETF Trust All rights reserved.

De-Duplication Awareness: What I am
asking of NFSv4 WG

Primary request
– Add de-duplication awareness to the NFSv4

charter
virtualization is the justification

Secondary request
– Start with draft-eisler-nfsv4-pnfs-dedupe-00.txt

Seems to fit with known de-duplication schemes

10© 2009 IETF Trust All rights reserved.

Why?

Magnetic disk is cheap
And yet customers are driving storage vendors
toward eliminating redundancy
– first it was whole files
– now it is blocks within files
NFS clients cache data from storage arrays in
DRAM and flash
– DRAM and flash are expensive
Ergo, de-duplication in NFS clients matters
The hypervisors are doing it already
– So storage arrays should give hypervisors the

de-duplication maps

11© 2009 IETF Trust All rights reserved.

The proposal at a glance

Does not require a new minor version of NFSv4
Requires new layout types
Use bit maps to indicate if a range of data in a file is
a duplicate from another file
Supports hierarchical (e.g., clones, snapshots), in-
line, and background de-duplication
Supports cross-storage-node de-duplication

– Can integrate with existing files, objects, and blocks
layouts

Limited to regular files
De-duplication awareness of directories is reasonable,

– but perhaps best captured in a separate document

12© 2009 IETF Trust All rights reserved.

Concepts

Source file:
– the file that contains the de-duplicated data.
Target file:
– the file the client has opened.
Block:
– the smallest unit of de-duplication that the server is

willing to support.
Slab:
– a byte range that refers to lists of smaller slabs or blocks
Regular file:
– An object of file type NF4REG or NF4NAMEDATTR
Indirect layouts contain slabs
– Refer to indirect layouts or leaf layouts
Leaf layouts contain blocks
– Leaf layouts indicate the source files

13© 2009 IETF Trust All rights reserved.

De-duplication Layout Trees

slab
size: 128

MB

next level
layout
type 1 0

first off: 0

last off:
16GB

…1 1 1 1 100000

6th slab:
offset 640

MB

slab
size: 1

MB

next level
layout
type 0 0

first off: 640
MB

last off: 768
MB

…1 0 0 0 110011

Indirect Layouts

4th slab: offset
643 MB

block
size:

8192 B

block
map

control
info

first off: 643
MB

last off: 644
MB

…

Le
af

 L
ay

ou
t

Block Map

14© 2009 IETF Trust All rights reserved.

Leaf Layout
Hierarchical De-duplication (snapshot, clone)

block
size:

8192 B

block map
control info

first off: 643
MB

last off: 644
MB

…1 0 1 1 11 0 0 11 1 1

125th block:
target offset
675250176

ddll_fhlist[0] – source file

ddl_change_attr[0]
If absent: server will recall leaf layout before changing active blocks
of source file.

If present: client must compare ddl_change_attr[0] with change
attribute of source file before using block from source.

source offset: also 675250176

643 * 1024 * 1024 + (125 - 1) * 8192

Let Client Dictate

15© 2009 IETF Trust All rights reserved.

Leaf Layout
Non-Hierarchical De-duplication (inline,
background)

block
size:

8192 B

block map
control info

first off: 643
MB

last off: 644
MB

…1, 2,
67

2nd block:
target offset
674242560

1, 1,
100

0, 0,
0

1, 1,
5001

ddll_fhlist[] – source files – { 0x12, 0x67, 0x43 }

source fh of 2nd block: 0x67

source offset of 2nd block: 100 * 8192 = 819200

target offset: 674242560 = 643*1024*1024 + (2-1)*8192

16© 2009 IETF Trust All rights reserved.

Leaf Layout
Cross-Node De-duplication

block
size:

8192 B

block map
control info

first off: 643
MB

last off: 644
MB

…1, 2,
2, 67

2nd block:
target offset
674242560

1, 1,
2,

100

0, 0,
0

1, 1,
0,

5001

ddll_devlist[] – device IDs – { 0x333, 0x111, 0x222 }
ddll_fhlist[] – source files – { 0x12, 0x67, 0x43 }
source file’s device: ID 0x111

can map to network address of another MDS
can map to any non-de-dupe layout type (files, blocks,
objects, metadata, …)

source fh of block 1: 0x43
source offset of block 1: 100 * 8192 = 819200
target offset: 674242560 = 643*1024*1024 + (2-1)*8192

