Shared Connection for TURN TCP

draft-petithuguenin-turn-tcp-variant-01

Marc Petit-Huguenin
03/25/2009

TURN UDP Allocation

» Data exchanged with peers on an UDP
allocation are multiplexed over one TCP or
UDP connection between the client and the
server.

Client Server Peer A PeerB
	<-AAA———	
	<-BBB-——————————-	
<~-AAA---BBB--———-		

TURN TCP Allocation

» Data exchanged with peers on a TCP allocation
use multiple TCP connections between the
client and the server.

Client
Port A Port B Server Peer A PeerB
		<-AAA-——	
	<-AAA-———		
		<-BBB————————————	

Why Two Mechanisms?

* If using multiple connections between the client
and server is a such good idea for TCP
allocation, why do not do the same for UDP
allocations?

Client
Port A Port B Server Peer A PeerB
		<-AAA———	
	<-AAA-———		
		<-BBB-————————————	

Let's rewrite TURN UDP!

« TURN UDP much simpler as the client source
port would identify the peer.

e Channels and Send/Data Indications can be
removed.

* No fragmentation for UDP packets already
close to the Path MTU.

 (Just kidding)

Reuse TURN UDP mechanism

* The multiplexing mechanism exists already for
UDP allocations, so let's reuse it:

Client Server Peer A PeerB
	<-ARA-—-	
	<-BBB————————————	
<-AAA---BBB--—-—-		

Modifications for TCP Allocations (1)

* Inspired by OpenSSH multiplexing

 Two new attributes used when a peer s
connected with a TCP allocation:

- WINDOW-SIZE: initial size of he window
- MAX-SIZE: size of the buffer

* An independent window size is associated to
the peer both on the client and on the server.

Modifications for TCP Allocations (2)

* A new AdjustWindow Indication:

- XOR-PEER-ADDRESS or CHANNEL-
NUMBER: Identifies the peer connection.

- ADD-SIZE: Value to add to the current window
size.

e The current window size decreases when data
IS sent.

Pros (1)

 Unified mechanism

* One TCP connection through the NAT per TCP
allocation (see iab-ip-model-evolution).

* Faster than establishing multiple connections
(same than persistent connections in HTTP 1.1
or OpenSSH multiplexing).

Pros (2)

* |CE TCP opens multiple TCP connections for
connectivity check, then close all but one — this
fits well with the multiplexing mechanism.

 Multiple TCP connections between the same
endpoints do not share congestion state.

Cons

 Head Of Line Blocking.
 Some optimizations not possible.

* Additional complexity added by the windowing
mechanism.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

