draft-mcgrew-srtp-ekt-04 draft-mcgrew-srtp-big-aes-01 draft-mcgrew-srtp-aes-gcm-01

mcgrew@cisco.com

draft-mcgrew-srtp-ekt-04 Encrypted Key Transport for SRTP

- In-band key transport protected by separate RTP session-level key
 - Conveys SRTP master key and ROC
- Layer of indirection between Key Management and SRTP
 - Avoids layer violation
 - Key management should be oblivious to RTP Sources, SSRCs, Seq Nums, Rollover Counter
 - Indirection is important for large groups

1. DTLS-SRTP-KTR (1:1)

2. EKT (1:Many)

Looking back and forward

- EKT defined 2006-2007
 - Expired pending implementation and interest
 - We now have both!
- EKT is only way to avoid layer violations
 - Essential for scalability to large groups
- EKT currently defined to use SDP Security Descriptions
 - DTLS-SRTP-KTR has much better security
 - DTLS-SRTP is IETF standard for SRTP keying

draft-mcgrew-srtp-big-aes-01 The use of AES-192 and AES-256 in Secure RTP

- RFC 3711 used only the Advanced Encryption Standard (AES) with 128-bit keys
 - Motivation: compactness, simplicity
 - 128-bit keys are more than adequately secure
- This draft adds AES-192 and AES-256 to SRTP
 - RTP Payload encryption
 - Key Derivation

Motivations for larger keys

- Confidentiality resistant to possible future advances in cryptanalysis
 - New mathematical ideas (DC, LC, XLS)
 - Construction of a practical quantum computer
- Fallback plan in case of advances
- Suite B conformance
- Interoperability
 - ZRTP, non-standard SRTP uses of AES-256

What's in the draft

- AES-192, AES-256 encryption transform
- AES-192, AES-256 key derivation function
 - Usage requirements
- Crypto Suites
 - RFC 4568 (SDP Security Descriptions)

Questions

- Should we make AES-192 optional?
- Should we add DTLS-SRTP bindings?
- Should we make this work standards track?

draft-mcgrew-srtp-aes-gcm-01 AES-GCM and AES-CCM Authenticated Encryption in Secure RTP

- Adds to SRTP:
 - AES Galois/Counter Mode (GCM)
 - AES Counter and CBC-MAC Mode (CCM)
 - Interface to other Authenticated Encryption algorithms

AES GCM

- Provides encryption and authentication
- Best mode for performance and efficiency
 - Especially suitable for hardware
 - Especially suitable for short packets
- For compact software, use CCM

Authenticated Encryption with Associated Data (AEAD)

- Provides encryption and authentication
 - Obviates Message Authentication Code like HMAC
- RFC 5116 defines AEAD interface
- This draft uses that interface
 - Simplifies definition
 - Promotes crypto agility and implementation reuse

AEAD encryption

AEAD encryption

AEAD use in SRTP

```
A |V=2|P|X| CC |M| Packet Type | sequence number
A \mid
            timestamp
      synchronization source (SSRC) identifier
    contributing source (CSRC) identifiers (optional)
A I
         RTP extension (OPTIONAL)
 Ρ
           pavload ...
Р
Ρ
             | RTP padding | RTP pad count |
 authentication tag (NOT RECOMMENDED)
 P = Plaintext (to be encrypted and authenticated)
```

A = Associated Data (to be authenticated only)