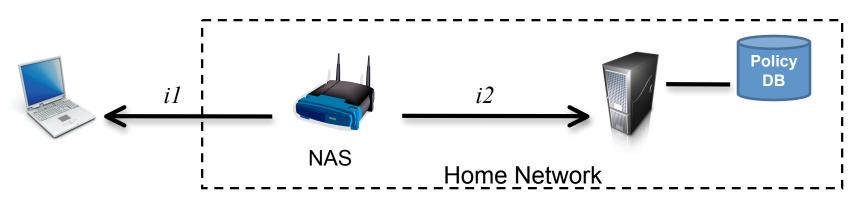
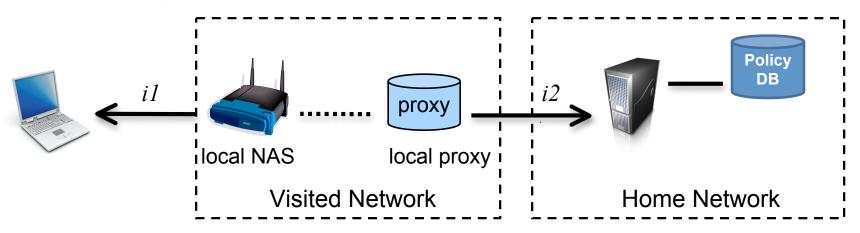

EAP Channel Bindings

Charles Clancy Katrin Hoeper

IETF 73 Minneapolis, USA 17 November 2008


Basic Approach

- During an EAP execution
 - peer sends advertised network information *i1* to server
 - server checks whether *i1* from the peer, *i2* from the last AAA hop and the respective policy are consistent
 - server sends notification to the peer indicating the result



Network Models

• Enterprise network

• Service provider network

Document Status

- Version -00 submitted before IETF 71
- Version -01 presented at IETF 71
 - submitted in June
- Version -02 submitted after IETF 72
 - addressed comments from EMU meeting
 - addressed Joe's comments
- Version -03 submitted in October
- Version -04 submitted in November
 - addressed Bernard's comments on -02 &03

Resolved Issues

- NAS information not used for authorizations
 - sometimes important which NAS (authenticator) the peer is connected to, e.g. if EAP server controls access to several networks
 - including NAS information into channel binding verification, thus, improving EAP's ability to provide authorization

Resolved Issues-(ii)

- Information *i1* not sufficiently described
 - described differences for enterprise and service provider models
 - provided examples of attributes
 - in general: NAS-Port Type, Cost information
 - IEEE 802.11: Called-Station-Id
 - IEEE 802.11r: Mobility-Domain-Id
 - IEEE 802.11s: Mesh-Key-Distributor-Domain-Id

Resolved Issues-(iii)

- Last hop information not utilized in verification
 - added information *i*² from last AAA hop to channel binding verification
 - explored impact of local proxies in service provider scenario and discussed usefulness and verifiability of "laundered" information
 - defined which AAA attributes can and should be validated
 - User-Name, NAS-IP-Address, Called-Station-Id, Calling-Station-Id, NAS-Identifier, NAS-Port-Type

Resolved Issues-(iv)

- Misstatement of "lying NAS" problem in roaming case
 - in service provider networks the lying entity is not necessarily the local NAS
 - could be lying local authentication server or local proxies
 - introduced "lying provider problem"
 - EAP channel bindings detect if one (or more) of the local entities is lying

Resolved Issues–(v)

- Incomplete comparison of main EAP channel binding approaches
 - removed "fuzzy comparisons"
 - described policy-based comparisons
 - added more advantages to exchanging plaintext information
 - "logging mode"
 - consistent information canonicalization and formatting unnecessary

Resolved Issues-(vi)

- Lack of transport protocol description
 - defined transport protocol requirements and explored options
 - channel binding protocol must be transported after keying material has been derived between peer and server
 - transport protocol for carrying channel binding information MUST support end-to-end message integrity protection
 - transport protocol SHOULD provide confidentiality
 - [I-D.clancy-emu-aaapay] is one possible option

Resolved_(vii)

- Missing privacy discussion
 - if channel binding messages contain identifiers of peer and/or network entities, the privacy property of the executed EAP method may be violated
 - discussed privacy violations as part of the "Security Considerations"

Resolved-(viii)

- Lack of operations and management considerations
 - analyzed system impact (Section 10.1)
 - explored required modifications to EAP peers
 & EAP servers
 - provided examples how server database can be set up more cost efficiently
 - auto-population phase (secure environment)
 - self-learn approach
 - incremental implementation

Resolved-(ix)

- Lack of examples on how EAP channel bindings prevent attacks
 - added Appendix describing attacks
 - enterprise subnetwork masquerading
 - forced roaming
 - downgrading attacks
 - bogus beacons in IEEE 802.11r
 - forcing false authorization in IEEE 802.11i

Open Issues

- Cost-benefit analysis
 - only provide impact discussion
 - no hard numbers on how much a deployment would cost and how much money would be saved by supporting channel bindings

Open Issues–(ii)

- Lower layer binding
 - need a way to transport the RSN-IE
 - define attributes for IEEE 802.16, wired
 802.1x, PPP, IKEv2, 3GPP2, PANA

Conclusion

- Request support with open issues
- Request WG review of -04 version
- Request adoption as WG item to satisfy channel bindings charter requirement