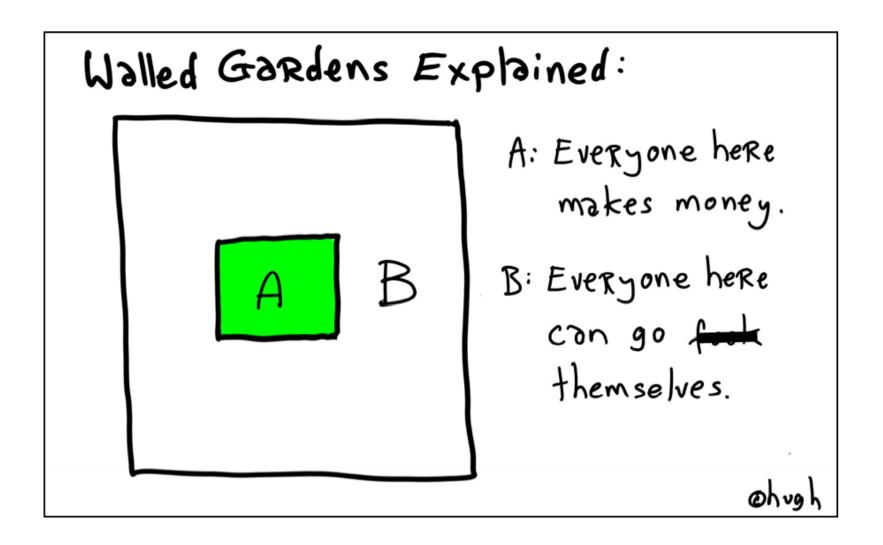
Port Range Proposals

Minneapolis / 2008.11.20

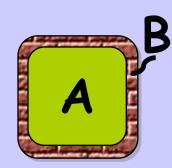
Gabor Bajko «Gabor.Bajko@nokia.com» Randy Bush «randy@psg.com» Rémi Després «remi.despres@free.fr» Pierre Levis «pierre.levis@orange-ftgroup.com» Olaf Maennel «olaf@maennel.net» Teemu Savolainen «teemu.savolainen@nokia.com»

Problem Statement

Providers will not have enough IPv4 space to give one IPv4 address to each CPE or terminal so that every consumer has usable IPv4 connectivity.


Carrier Grade NAT

- NAT in the core of the provider's network
- Customer has 4to6 NAT and the core re-NATs 6to4 for v4 destinations


CGN Breaks the Net

- Not only does this cause problems for the carrier, but also for the whole net, as these captive customers can not try or use new disruptive technology
- NAT in middle of net has the problems of a smart core
- Walled gardens here we go!

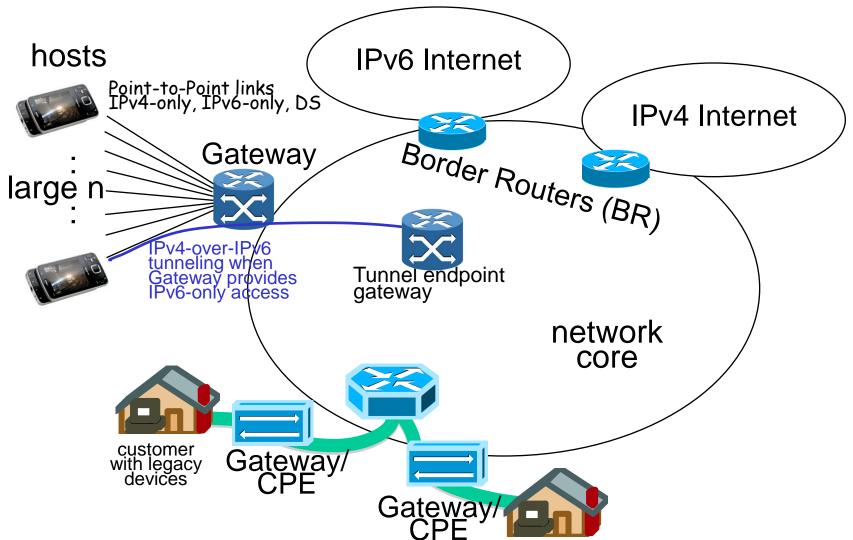
I Googled "Walled Garden"

Walled Garden Re-Explained

C = The Global Internet E.g. My Customers

A: Isolated, exploited, & restricted B: Everyone here makes money C: Everyone here can go fsck themselves

This Need Not Be Inevitable


Move the NAT to the Gateway/CPE

"It is expected that the home gateway is either software upgradable, replaceable or provided by the service provider as part of a new contract."

Constraints for possible solutions

Terminology

1) Incremental deployability and backward compatibility.

The approaches shall be transparent to unaware users. **Devices or existing applications** shall be able to work without modification. Emergence of new applications shall not be limited.

- 2) End-to-end is under customer control Customers shall have the possibility to send/receive packets unmodified and deploy new application protocols at will.
- 3) End-to-end transparency through multiple intermediate devices. Multiple gateways should be able to operate in sequence along one data path without interfering with each other.
- 4) Highly-scalable and state-less core.No state should be kept inside the ISP's network.

Constraints (II)

5) Efficiency vs. complexity

Operator has the flexibility to trade off between port multiplexing efficiency (CGN) and scalability + end-to-end transparency (port range).

6) Automatic configuration/administration.

There should be no need for customers to call the ISP and tell them that they are operating their own gateway devices.

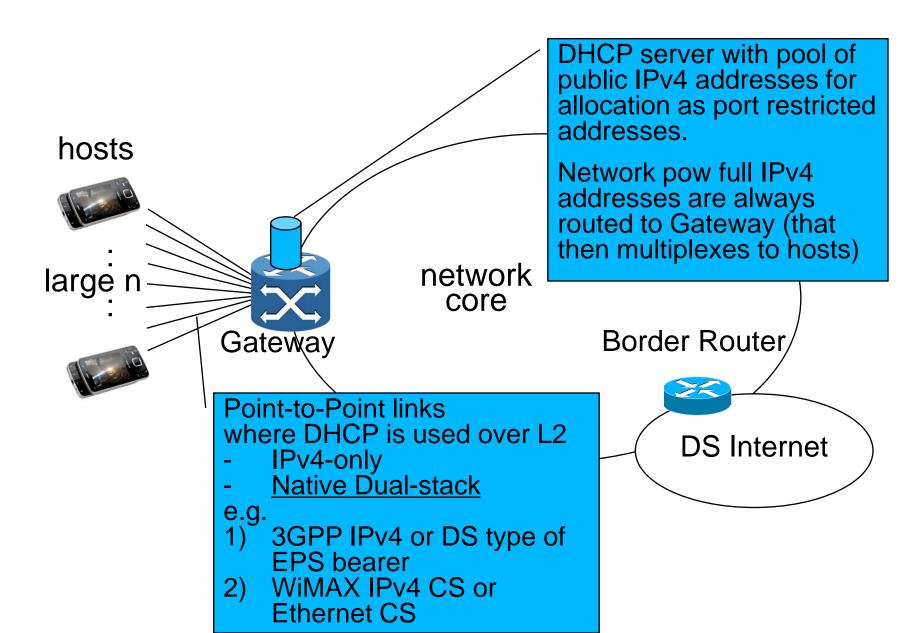
7) "Double-NAT" shall be avoided.

Based on constraint 3 multiple gateway devices might be present in a path, and once one has done some translation, those packets should not be re-translated.

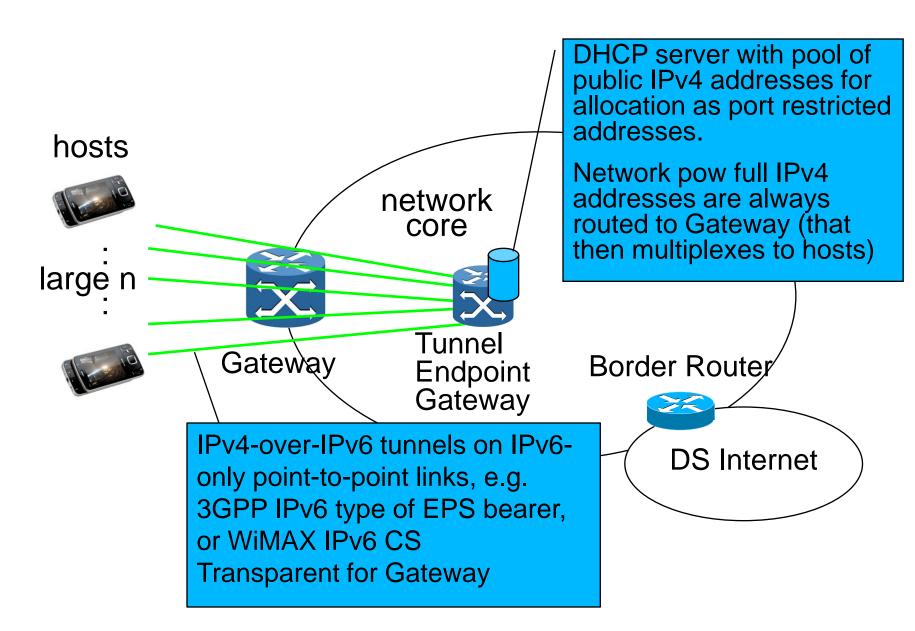
8) Legal traceability

ISPs must be able to provide the identity of a customer from the knowledge of the IPv4 public address and the port. This should have the lowest impact possible on the storage and the IS

9) IPv6 deployment should be encouraged.


Proposals in short

draft-bajko-v6ops-portrestricted-ipaddr-assign


draft-bajko-v6ops-port-restricted-ipaddr-assign

- For tightly controlled networks
 - Where hosts can be modified and modifications mandated
 - Cellular networks are the particular example
- Mainly for point-to-point links
 - Physical access links (L2): e.g. 3GPP IPv4 EPS bearer, WiMAX Forum IPv4 CS
 - IPv4-over-IPv6 tunneled access links (L3): e.g. IPv6 clouds, IPv6 PPP, IPv6 EPS bearer, IPv6 CS
- To allow NAT-less communication
 - To save on **BATTERY** and complexity

Physical point-to-point links - with or w/o IPv6

Tunneled point-to-point links - over IPv6

About gateway functionality

- Gateway has a pool of public IPv4 addresses
- Gateway can also be acting as a NAT for legacy hosts (CGN)
- Gateway can allocate port-restricted
 IPv4 addresses and multiplex by ports
- Same stands for both first hop Gateway and Tunnel Endpoint Gateway

Gateway multiplexing tables

For physical link scenario

Point-to-point link	Public address + port range
Link 1	129.0.0.1 / 5000-5999
Link 2	129.0.0.1 / 6000-6999

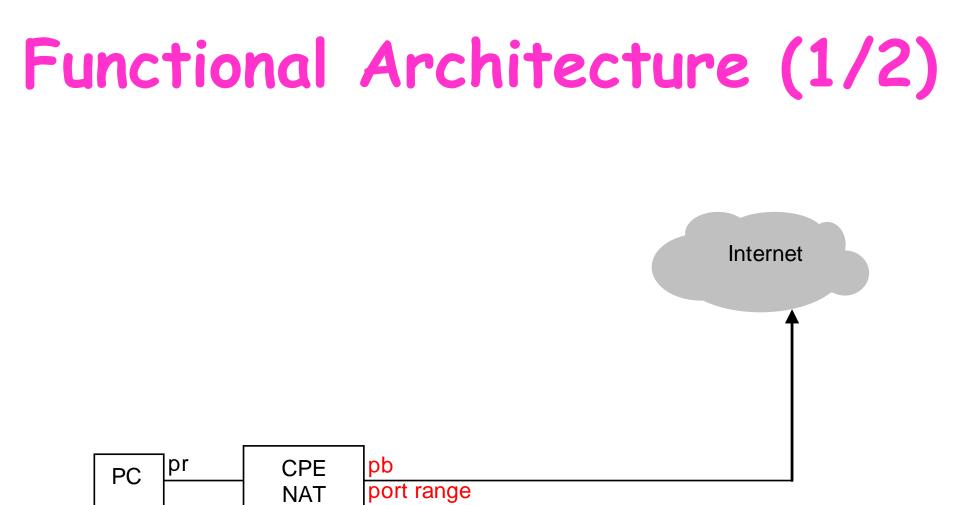
For tunneled link scenario

Point-to-point tunnel Public address + port range	
Tunnel 1	129.0.0.1 / 5000-5999
Tunnel 2	129.0.0.1 / 6000-6999

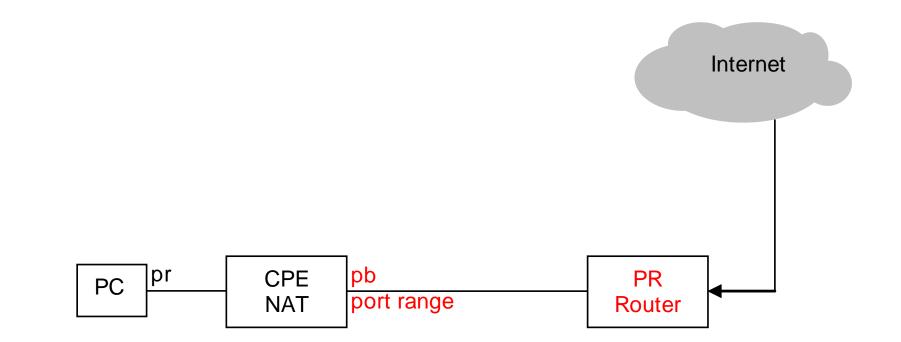
 Very similar to multiplexing done in NATs, except only encapsulation here

DHCP option use and contents

- In case IPv4 connectivity is needed, host requests IPv4 address with OPTION-IPv4-RPR to indicate capability for port-restricted IP addresses
- On *presence* of OPTION-IPv4-RPR DHCP server offers OPTION-IPv4-OPR and 'yiaddr' of '0.0.0.0'
- On *absence* of OPTION-IPv4 RPR server allocates full public or private IP address


NAT in a host

- Hides port-restricted IPv4 addresses from the users and applications
- Distributes NAT functionality to very edges
- Allows host local optimizations for NAT traversal
- Allows NAT control protocols


draft-boucadair-port-range draft-boucadair-dhc-port-range

draft-boucadair-port-range draft-boucadair-dhc-port-range

- Solution Space:
 - Fixed broadband network
 - Residential customers
 - CPEs provided by the ISP

Functional Architecture (2/2)

Some constraints

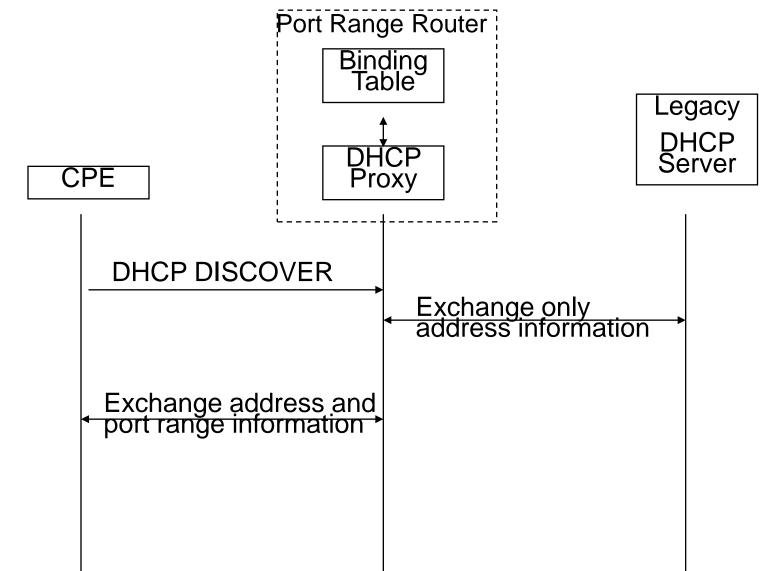
- The PRR must have a route to reach each CPE it covers
- Packets from a customer to another customer must pass through the PRR that handles the destination subnet
- Communications between two CPEs attached to the same PRR must go up to this PRR
- There is no intermediate routers between the PRR and the CPEs

Some architectural choices

- The choices depend on the ISP requirements and engineering context
- Where to put the PRR?
 - Close to the user vs. close to the core
 - Distributed vs. centralized
- How to route from PRR to CPEs?
 - Point to point relationship (ex L2TP)
 - Private address to CPE, and v4 in v4
 - Private address to CPE, and MAC destination address on L2 access
 - IPv6 address to CPE, and v4 in v6

•

Address+Port allocation


Alt1: make your IS port range aware

Exchange address and port range information

Alt2: hide port range from your IS

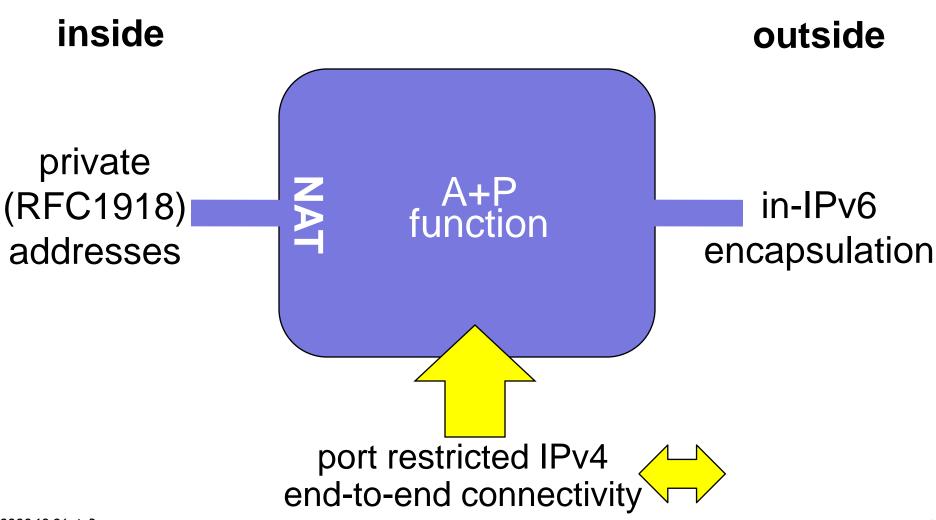
DHCP Option (1/2)

- Port range allocation only (no address)
 - Addresses allocated as today
- Use the notion of Port Mask (similar to Subnet Mask)
- Port Range: a set of port values, may be non-contiguous
- Information carried:
 - Value
 - Mask

DHCP Option (2/2)

- Ex (contiguous):
 - Value: 1000000000000000
 - Mask: 1100000000000000
 - Port Range = 32768-49151
- Ex (non-contiguous):
 - Value: 00000000000000000
 - Mask: 000000110000000
 - Port Range = 0-255, ..., 64512-64767 (64 ranges)
- Other examples are given in the draft

Do we need port masks?


- Brings flexibility
- Non-contiguous values never used for subnets
- But subnet is not port range
 - Subnets are hierarchical, port ranges are not
- Masks restrict to power of two lengths
 - Subnets too
- Port range value will be computed by software, masks are easier to handle than range intervals

draft-ymbk-aplusp

A+P in One Slide

- Similar approach to DS-light (Durand)
- DS-light translate in the core, A+P encaps/decaps in the core, translates at the edge. No state in core.
- Mechanism required that customer can control their fate

A+P gateway

Encap from CPE

- WKP = well known prefix, 4666::0/64
- Source of v6 packet is WKP+A+P
- Dest address of v6 packet
 - WKP+v4dest
- Border (BR) makes global v4 packet
 - source = A+P
 - dest = v4dest

IPv6 Encap Toward CPE

- BR receives IPv4 packet w/ src/dest
- Encapsulates in IPv6 packet
 - -src = WKP+src
 - dest = WKP+dest
- But note that dest is A+P
- It routes normally within ISP core

Note That

- Normal IPv6 backbone routing is used
- Routing out from gateway is based on real destination, not pre-configured tunnel
- Only A+P-gateway (e.g., CPE) and Border Routers are hacked
- No new equipment is introduced
- BRs do not have state or scaling issues

draft-despres-sam

SAMs Stateless Address Mappings

- . v4-v6 Coexistence => various vX/vY encapsulations
- . A+P, which extends the global IPv4 space, has to be supported
- . A generic mechanism => less specification, less code, less validations, less training...
- . SAMs are designed for this (presentation in Softwire 4:40 PM)

Comparison of proposals

- Based on current documents
- Most differences come from the addressed architectures
- Authors feel that convergence is worth trying

Comparison matrix (1)

	PR-IP	PRRs	A+P - BP	SAMs
A+P implemented where ?				
Host & gateway	Х		X	Х
CPE & gateway	Х	X	X	Х
Host behind CPE & CPE				Х
Host behind CPE & CPE & gateway			X	Х
A+P tunnelled on what ?				
Point-to-Point link	Х	X		
Private IPv4	Х	X		Х
IPv6	Х	X		Х
IPv6 - Specific address prefix			X	Х
A+P mapping table stored where ?				
gateway	Х			
DHCP & gateway		Х		
n/a, derived from IPv6 addr			X	
n/a, derived from local addr				Х

Comparison matrix (2)

	PR-IP	PRRs	A+P - BP	SAMs
A+P values reserved when ?				
At DHCP request time	X	X		
Statically, independently of usage			X	Х
Which kind of gateway address ?				
Non applicable (layer 2)	Х			
Unicast	X	X	X	
Anycast				Х
Which software handles the port restriction ?				
In the host, the socket-interface module	X			Х
The NAT44 of the CPE	Х	X		Х
In the CPE, a specific module in front of the NAT44			X	

Comparison matrix (3)

	PR-IP	PRRs	A+P - BP	SAMs
Where are IPv4-fragments handled ?				
One dedicated box			x	
Gateway	x	x		x
Which assumptions on routing ?				
None. Single entry point only	x	x		
None. Any order, any entry point			x	
To the same gateway most of the time				x
11.20 IETF 73 / behave				

Discussion Questions?